XplainScreen: Unveiling the Black Box of Graph Neural Network Drug Screening Models with a Unified XAI Framework

Geonhee Ahn, Md Mahim Anjum Haque, Subhashis Hazarika, Soo Kyung Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Despite the powerful capabilities of GNN-based drug screening model in predicting target drug properties, the black-box nature of these models poses a challenge for practical application, particularly in a field as critical as drug development where understanding and trust in AI-driven decisions are important. To address the interpretability issues associated with GNN-based virtual drug screening, we introduce XplainScreen: a unified explanation framework designed to evaluate various explanation methods for GNN-based models. XplainScreen offers a user-friendly, web-based interactive platform that allows for the selection of specific GNN-based drug screening models and multiple cutting-edge explainable AI methods. It supports both qualitative assessments (through visualization and generative text descriptions) and quantitative evaluations of these methods, utilizing drug molecules in SMILES format. This demonstration showcases the utility of XplainScreen through a user study with pharmacological researchers focused on virtual screening tasks based on toxicity, highlighting the framework's potential to enhance the integrity and trustworthiness of AI-driven virtual drug screening. A video demo of XplainScreen is available at https://youtu.be/Q4yobrTLKec, and the source code can be accessed at https://github.com/GeonHeeAhn/XplainScreen.

Original languageEnglish
Title of host publicationCIKM 2024 - Proceedings of the 33rd ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages5164-5168
Number of pages5
ISBN (Electronic)9798400704369
DOIs
StatePublished - 21 Oct 2024
Event33rd ACM International Conference on Information and Knowledge Management, CIKM 2024 - Boise, United States
Duration: 21 Oct 202425 Oct 2024

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
ISSN (Print)2155-0751

Conference

Conference33rd ACM International Conference on Information and Knowledge Management, CIKM 2024
Country/TerritoryUnited States
CityBoise
Period21/10/2425/10/24

Bibliographical note

Publisher Copyright:
© 2024 Owner/Author.

Keywords

  • drug screening
  • explainable AI
  • graph neural networks
  • scientific machine learning

Fingerprint

Dive into the research topics of 'XplainScreen: Unveiling the Black Box of Graph Neural Network Drug Screening Models with a Unified XAI Framework'. Together they form a unique fingerprint.

Cite this