Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains

Wenbo Li, Feng Xu, Michael Schär, Jing Liu, Taehoon Shin, Yansong Zhao, Peter C.M. van Zijl, Bruce A. Wasserman, Ye Qiao, Qin Qin

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


Purpose: To develop velocity-selective (VS) MR angiography (MRA) protocols for arteriography and venography with whole-brain coverage. Methods: Tissue suppression using velocity-selective saturation (VSS) pulse trains is sensitive to radiofrequency field (B1+) inhomogeneity. To reduce its sensitivity, we replaced the low-flip-angle hard pulses in the VSS pulse train with optimal composite (OCP) pulses. Additionally, new pulse sequences for arteriography and venography were developed by placing spatially selective inversion pulses with a delay to null signals from either venous or arterial blood. The VS MRA techniques were compared to the time-of-flight (TOF) MRA in six healthy subjects and two patients at 3T. Results: More uniform suppression of stationary tissue was observed when the hard pulses were replaced by OCP pulses in the VSS pulse trains, which improved contrast ratios between blood vessels and tissue background for both arteries (0.87 vs. 0.77) and veins (0.80 vs. 0.59). Both arteriograms and venograms depicted all major cervical and intracranial arteries and veins, respectively. Compared to TOF MRA, VS MRA not only offers larger spatial coverage but also depicts more small vessels. Initial clinical feasibility was shown in two patients with comparisons to TOF protocols. Conclusion: Noncontrast-enhanced whole-brain arteriography and venography can be obtained without losing sensitivity to small vessel detection. Magn Reson Med 79:2014–2023, 2018.

Original languageEnglish
Pages (from-to)2014-2023
Number of pages10
JournalMagnetic Resonance in Medicine
Issue number4
StatePublished - Apr 2018

Bibliographical note

Publisher Copyright:
© 2017 International Society for Magnetic Resonance in Medicine


  • arteriography
  • cerebral MRA
  • noncontrast-enhanced MRA
  • optimal control
  • velocity-selective pulse train
  • venography


Dive into the research topics of 'Whole-brain arteriography and venography: Using improved velocity-selective saturation pulse trains'. Together they form a unique fingerprint.

Cite this