TY - GEN
T1 - Watt-level wireless power transfer based on stacked flex circuit technology
AU - Yu, Xuehong
AU - Herrault, Florian
AU - Ji, Chang Hyeon
AU - Kim, Seong Hyok
AU - Allen, Mark G.
AU - Lisi, Gianpaolo
AU - Nguyen, Luu
AU - Anderson, David I.
PY - 2011
Y1 - 2011
N2 - This paper presents the design, simulation, fabrication, and experimental characterization of a multi-layer spiral inductor that acts as the receiver coil for watt-level wireless power transfer. The inductor was designed with multiple vertical laminations where 88-m-thick copper coils were separated by 25-m-thick Kapton films using a flexible PCB fabrication technique. This Cu-Kapton approach has the potential for lower-cost coil fabrication than relatively expensive Litz-wire winding techniques. Varying turn widths were implemented to account for proximity effects and maximize the coil current distribution uniformity inside the coil windings at a given frequency, as validated by two-dimensional electromagnetic simulations. The multi-layer design incorporating lamination of four layers together with width variation exhibited a Q-factor improvement of 150% in comparison to the single-layer inductor. It was measured to have an inductance of 17 μH and a Q-factor of 50 at 300 kHz with an outer diameter of 5 cm. With a Litz-wire inductor as the transmitter coil for wireless power transfer, a load power of 7 Watts was transferred at 300 kHz over a distance of 5 cm and 5 Watts over 10 cm, two times the coil diameter, achieving an overall efficiency (defined as the ratio of the received load power to the total input power to the driving circuitry) of 46% and 23% respectively. In comparison, a manually-wound Litz-wire receiver coil with same characteristics under similar conditions demonstrated an overall efficiency of 58% and 39% at one and two-diameter distances, respectively.
AB - This paper presents the design, simulation, fabrication, and experimental characterization of a multi-layer spiral inductor that acts as the receiver coil for watt-level wireless power transfer. The inductor was designed with multiple vertical laminations where 88-m-thick copper coils were separated by 25-m-thick Kapton films using a flexible PCB fabrication technique. This Cu-Kapton approach has the potential for lower-cost coil fabrication than relatively expensive Litz-wire winding techniques. Varying turn widths were implemented to account for proximity effects and maximize the coil current distribution uniformity inside the coil windings at a given frequency, as validated by two-dimensional electromagnetic simulations. The multi-layer design incorporating lamination of four layers together with width variation exhibited a Q-factor improvement of 150% in comparison to the single-layer inductor. It was measured to have an inductance of 17 μH and a Q-factor of 50 at 300 kHz with an outer diameter of 5 cm. With a Litz-wire inductor as the transmitter coil for wireless power transfer, a load power of 7 Watts was transferred at 300 kHz over a distance of 5 cm and 5 Watts over 10 cm, two times the coil diameter, achieving an overall efficiency (defined as the ratio of the received load power to the total input power to the driving circuitry) of 46% and 23% respectively. In comparison, a manually-wound Litz-wire receiver coil with same characteristics under similar conditions demonstrated an overall efficiency of 58% and 39% at one and two-diameter distances, respectively.
UR - http://www.scopus.com/inward/record.url?scp=79960415253&partnerID=8YFLogxK
U2 - 10.1109/ECTC.2011.5898822
DO - 10.1109/ECTC.2011.5898822
M3 - Conference contribution
AN - SCOPUS:79960415253
SN - 9781612844978
T3 - Proceedings - Electronic Components and Technology Conference
SP - 2185
EP - 2191
BT - 2011 IEEE 61st Electronic Components and Technology Conference, ECTC 2011
T2 - 2011 61st Electronic Components and Technology Conference, ECTC 2011
Y2 - 31 May 2011 through 3 June 2011
ER -