Vitamin D receptor and binding protein polymorphisms in women with polycystic ovary syndrome: A case control study

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Background: Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age, characterized by hyperandrogenism, oligomenorrhea, polycystic ovary morphology, and insulin resistance. Vitamin D deficiency and vitamin D receptor (VDR)/vitamin D binding protein (VDBP) gene variants could play an important role in susceptibility to PCOS and contribute to metabolic disturbances and menstrual dysfunction. We aimed to investigate the associations of VDR gene and VDBP gene polymorphisms with PCOS susceptibility and to elucidate the impacts of these polymorphisms on the hormonal and metabolic parameters of PCOS. Methods: We recruited 432 women with PCOS and 927 controls. Polymorphisms in the VDR gene (VDR Fok-I, Cdx2, Apa-I, and Bsm-I) and VDBP gene (VDBP rs4588, rs7041, and rs22822679) were genotyped. A 75-g oral glucose tolerance test was performed. Results: The distributions of genotypes and allele frequencies in VDR and VDBP genes did not differ between PCOS and control. In women with PCOS, compared to the VDR Fok-I GG genotype, the VDR Fok-I AG genotype was significantly associated with increased levels of total testosterone (β = 5.537, P = 0.005). Compared to the VDR Cdx2 AC genotype, the VDR Cdx2 CC genotype was associated with increased levels of fasting insulin and HOMA-IR in women with PCOS, however, the associations were not statistically significant. Conclusions: This finding indicates that genetic variations in VDR and VDBP were not associated with increased risk for PCOS. In contrast, the VDR Fok-I polymorphism was associated with testosterone level and the Cdx2 polymorphism with insulin sensitivity in PCOS. However, the Cdx2 polymorphism was not significantly associated with increased insulin and insulin sensitivity in women with PCOS after multiple linear regression.

Original languageEnglish
Article number145
JournalBMC Endocrine Disorders
Issue number1
StatePublished - 23 Dec 2019

Bibliographical note

Publisher Copyright:
© 2019 The Author(s).


  • Hyperandrogenism
  • Insulin resistance
  • Polycystic ovary syndrome
  • Vitamin D binding protein
  • Vitamin D receptor


Dive into the research topics of 'Vitamin D receptor and binding protein polymorphisms in women with polycystic ovary syndrome: A case control study'. Together they form a unique fingerprint.

Cite this