Validation of deep learning-based artifact correction on synthetic FLAIR images in a different scanning environment

Kyeong Hwa Ryu, Hye Jin Baek, Sung Min Gho, Kanghyun Ryu, Dong Hyun Kim, Sung Eun Park, Ji Young Ha, Soo Buem Cho, Joon Sung Lee

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We investigated the capability of a trained deep learning (DL) model with a convolutional neural network (CNN) in a different scanning environment in terms of ameliorating the quality of synthetic fluid-attenuated inversion recovery (FLAIR) images. The acquired data of 319 patients obtained from the retrospective review were used as test sets for the already trained DL model to correct the synthetic FLAIR images. Quantitative analyses were performed for native synthetic FLAIR and DL-FLAIR images against conventional FLAIR images. Two neuroradiologists assessed the quality and artifact degree of the native synthetic FLAIR and DL-FLAIR images. The quantitative parameters showed significant improvement on DL-FLAIR in all individual tissue segments and total intracranial tissues than on the native synthetic FLAIR (p < 0.0001). DL-FLAIR images showed improved image quality with fewer artifacts than the native synthetic FLAIR images (p < 0.0001). There was no significant difference in the preservation of the periventricular white matter hyperintensities and lesion conspicuity between the two FLAIR image sets (p = 0.217). The quality of synthetic FLAIR images was improved through artifact correction using the trained DL model on a different scan environment. DL-based correction can be a promising solution for ameliorating the quality of synthetic FLAIR images to broaden the clinical use of synthetic magnetic resonance imaging (MRI).

Original languageEnglish
Article number364
JournalJournal of Clinical Medicine
Volume9
Issue number2
DOIs
StatePublished - Feb 2020

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Computer-assisted
  • Deep learning
  • Image enhancement
  • Image interpretation
  • Magnetic resonance imaging
  • Neural networks (computer)

Fingerprint

Dive into the research topics of 'Validation of deep learning-based artifact correction on synthetic FLAIR images in a different scanning environment'. Together they form a unique fingerprint.

Cite this