Abstract
The ability to coat surfaces with pre-determined patterns of biomolecules by soft lithography has found use in areas ranging from fundamental biology to translational medicine, such as tissue engineering and diagnostics. However, existing surface patterning techniques (e.g., microcontact printing and traditional lithography) are unable to pattern several biomolecules in a single step. Here we introduce a simple method to simultaneously pattern multiple biomolecules in complex two-dimensional configurations onto substrates with better than 2 m resolution. This protocol, termed vacuum soft lithography, utilized below ambient pressures temporarily stored within a removable microfluidic template to expose specific regions of a substrate to multiple biochemical solutions. We demonstrate the utility of this vacuum soft lithography technique by fabricating a multi-component array that directs the adhesion, polarization, and neurite guidance of primary hippocampal neurons.
Original language | English |
---|---|
Pages (from-to) | 343-347 |
Number of pages | 5 |
Journal | Soft Matter |
Volume | 7 |
Issue number | 2 |
DOIs | |
State | Published - 21 Jan 2011 |