Vacancy-Driven Stabilization of the Cubic Perovskite Polymorph of CsPbI 3

Yun Hyok Kye, Chol Jun Yu, Un Gi Jong, Kum Chol Ri, Jin Song Kim, Song Hyok Choe, Song Nam Hong, Shuzhou Li, Jacob N. Wilson, Aron Walsh

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

The inorganic halide perovskite CsPbI 3 has shown great promise for efficient solar cells, but the instability of its cubic phase remains a major challenge. We present a route for stabilizing the cubic α-phase of CsPbI 3 through the control of vacancy defects. Analysis of the ionic chemical potentials is performed within an ab initio thermodynamic formalism, including the effect of solution. It is found that cation vacancies lead to weakening of the interaction between Cs and PbI 6 octahedra in CsPbI 3 , with a decrease in the energy difference between the α- and δ-phases. Under I-rich growth conditions, which can be realized experimentally, we predict that the formation of cation vacancies can be controlled. Other synthetic strategies for cubic-phase stabilization include the growth of nanocrystals, surface capping ligands containing reductive functional groups, and extrinsic doping. Our analysis reveals mechanisms for polymorph stabilization that open a new pathway for structural control of halide perovskites.

Original languageEnglish
Pages (from-to)9735-9744
Number of pages10
JournalJournal of Physical Chemistry C
Volume123
Issue number15
DOIs
StatePublished - 18 Apr 2019

Bibliographical note

Publisher Copyright:
© 2019 American Chemical Society.

Fingerprint

Dive into the research topics of 'Vacancy-Driven Stabilization of the Cubic Perovskite Polymorph of CsPbI 3'. Together they form a unique fingerprint.

Cite this