Use of latent class analysis to identify multimorbidity patterns and associated factors in Korean adults aged 50 years and older

Bomi Park, Hye Ah Lee, Hyesook Park

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Introduction Multimorbidity associated with significant disease and economic burdens is common among the aged. We identified chronic disease multimorbidity patterns in Koreans 50 years of age or older, and explored whether such patterns were associated with particular sociodemographic factors and health-related quality-of-life. Methods The multimorbidity patterns of 10 chronic diseases (hypertension, dyslipidemia, stroke, osteoarthritis, tuberculosis, asthma, allergic rhinitis, depression, diabetes mellitus, and thyroid disease) were identified via latent class analysis of data on 8,370 Korean adults aged 50+ years who participated in the sixth Korean National Health and Nutrition Examination Survey (2013–2015). The associations between multimorbidity patterns, and sociodemographic factors and health-related quality of life, were subjected to regression analysis. Results Three patterns of multimorbidity were identified: 1) a relatively healthy group (60.4% of the population); 2) a ‘cardiometabolic conditions’ group (27.8%); and, 3) an ‘arthritis, asthma, allergic rhinitis, depression, and thyroid disease’ group (11.8%). The female (compared to male) gender was associated with an increased likelihood of membership of the cardiometabolic conditions group (odds ratio [OR] = 1.32, 95% confidence interval [CI] = 1.15–1.51) and (to a much greater extent) the arthritis, asthma, allergy, depression, and thyroid disease group (OR = 4.32, 95% CI = 3.30–5.66). Low socioeconomic status was associated with membership of the two multimorbidity classes. Membership of the arthritis, asthma, allergy, depression, and thyroid disease group was associated with a significantly poorer health-related quality-of-life than was membership of the other two groups. Conclusion The co-occurrence of chronic diseases was not attributable to chance. Multimorbidity patterns were associated with sociodemographic factors and quality-of-life. Our results suggest that targeted, integrated public health and clinical strategies dealing with chronic diseases should be based on an understanding of multimorbidity patterns; this would improve the quality-of-life of vulnerable multimorbid adults.

Original languageEnglish
Article numbere0216259
JournalPLoS ONE
Volume14
Issue number11
DOIs
StatePublished - 1 Nov 2019

Bibliographical note

Funding Information:
This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI18C0446). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Publisher Copyright:
© 2019 Park et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Fingerprint

Dive into the research topics of 'Use of latent class analysis to identify multimorbidity patterns and associated factors in Korean adults aged 50 years and older'. Together they form a unique fingerprint.

Cite this