TY - JOUR
T1 - Urinary Exosomal and cell-free DNA Detects Somatic Mutation and Copy Number Alteration in Urothelial Carcinoma of Bladder
AU - Lee, Dong Hyeon
AU - Yoon, Hana
AU - Park, Sanghui
AU - Kim, Jeong Seon
AU - Ahn, Young Ho
AU - Kwon, Kihwan
AU - Lee, Donghwan
AU - Kim, Kwang Hyun
N1 - Publisher Copyright:
© 2018, The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Urothelial bladder carcinoma (UBC) is characterized by a large number of genetic alterations. DNA from urine is a promising source for liquid biopsy in urological malignancies. We aimed to assess the availability of cell-free DNA (cfDNA) and exosomal DNA (exoDNA) in urine as a source for liquid biopsy in UBC. We included 9 patients who underwent surgery for UBC and performed genomic profiling of tumor samples and matched urinary cfDNA and exoDNA. For mutation analysis, deep sequencing was performed for 9 gene targets and shallow whole genome sequencing (sWGS) was used for the detection of copy number variation (CNV). We analyzed whether genetic alteration in tumor samples was reflected in urinary cfDNA or exoDNA. To measure the similarity between copy number profiles of tumor tissue and urinary DNA, the Pearson’s correlation coefficient was calculated. We found 17 somatic mutations in 6 patients. Of the 17 somatic mutations, 14 and 12 were identified by analysis of cfDNA and exoDNA with AFs of 56.2% and 65.6%, respectively. In CNV analysis using sWGS, although the mean depth was 0.6X, we found amplification of MDM2, ERBB2, CCND1 and CCNE1, and deletion of CDKN2A, PTEN and RB1, all known to be frequently altered in UBC. CNV plots of cfDNA and exoDNA showed a similar pattern with those from the tumor samples. Pearson’s correlation coefficients of tumor vs. cfDNA (0.481) and tumor vs. exoDNA (0.412) were higher than that of tumor vs. normal (0.086). We successfully identified somatic mutations and CNV in UBC using urinary cfDNA and exoDNA. Urinary exoDNA could be another source for liquid biopsy. Also, CNV analysis using sWGS is an alternative strategy for liquid biopsy, providing data from the whole genome at a low cost.
AB - Urothelial bladder carcinoma (UBC) is characterized by a large number of genetic alterations. DNA from urine is a promising source for liquid biopsy in urological malignancies. We aimed to assess the availability of cell-free DNA (cfDNA) and exosomal DNA (exoDNA) in urine as a source for liquid biopsy in UBC. We included 9 patients who underwent surgery for UBC and performed genomic profiling of tumor samples and matched urinary cfDNA and exoDNA. For mutation analysis, deep sequencing was performed for 9 gene targets and shallow whole genome sequencing (sWGS) was used for the detection of copy number variation (CNV). We analyzed whether genetic alteration in tumor samples was reflected in urinary cfDNA or exoDNA. To measure the similarity between copy number profiles of tumor tissue and urinary DNA, the Pearson’s correlation coefficient was calculated. We found 17 somatic mutations in 6 patients. Of the 17 somatic mutations, 14 and 12 were identified by analysis of cfDNA and exoDNA with AFs of 56.2% and 65.6%, respectively. In CNV analysis using sWGS, although the mean depth was 0.6X, we found amplification of MDM2, ERBB2, CCND1 and CCNE1, and deletion of CDKN2A, PTEN and RB1, all known to be frequently altered in UBC. CNV plots of cfDNA and exoDNA showed a similar pattern with those from the tumor samples. Pearson’s correlation coefficients of tumor vs. cfDNA (0.481) and tumor vs. exoDNA (0.412) were higher than that of tumor vs. normal (0.086). We successfully identified somatic mutations and CNV in UBC using urinary cfDNA and exoDNA. Urinary exoDNA could be another source for liquid biopsy. Also, CNV analysis using sWGS is an alternative strategy for liquid biopsy, providing data from the whole genome at a low cost.
UR - http://www.scopus.com/inward/record.url?scp=85054160179&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-32900-6
DO - 10.1038/s41598-018-32900-6
M3 - Article
C2 - 30279572
AN - SCOPUS:85054160179
SN - 2045-2322
VL - 8
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 14707
ER -