TY - JOUR
T1 - Unraveling the Transformation from Type-II to Z-Scheme in Perovskite-Based Heterostructures for Enhanced Photocatalytic CO2 Reduction
AU - Song, Wentao
AU - Chong, Kok Chan
AU - Qi, Guobin
AU - Xiao, Yukun
AU - Chen, Ganwen
AU - Li, Bowen
AU - Tang, Yufu
AU - Zhang, Xinyue
AU - Yao, Yingfang
AU - Lin, Zhiqun
AU - Zou, Zhigang
AU - Liu, Bin
N1 - Publisher Copyright:
© 2024 American Chemical Society
PY - 2024/2/7
Y1 - 2024/2/7
N2 - The ability to create perovskite-based heterostructures with desirable charge transfer characteristics represents an important endeavor to render a set of perovskite materials and devices with tunable optoelectronic properties. However, due to similar material selection and band alignment in type-II and Z-scheme heterostructures, it remains challenging to obtain perovskite-based heterostructures with a favorable electron transfer pathway for photocatalysis. Herein, we report a robust tailoring of effective charge transfer pathway in perovskite-based heterostructures via a type-II to Z-scheme transformation for highly efficient and selective photocatalytic CO2 reduction. Specifically, CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 heterostructures are synthesized and then investigated by ultrafast spectroscopy. Moreover, taking CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 as examples, operando experiments and theoretical calculations confirm that the type-II heterostructure could be readily transformed into a Z-scheme heterostructure through establishing a low-resistance Ohmic contact, which indicates that a fast electron transfer pathway is crucial in Z-scheme construction, as further demonstrated by CsPbBr3/Ag/TiO2 and CsPbBr3/MoS2 heterostructures. In contrast to pristine CsPbBr3 and CsPbBr3/TiO2, the CsPbBr3/Au/TiO2 heterostructure exhibits 5.4- and 3.0-fold enhancement of electron consumption rate in photocatalytic CO2 reduction. DFT calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy unveil that the superior CO selectivity is attributed to the lower energy of *CO desorption than that of hydrogenation to *HCO. This meticulous design sheds light on the modification of perovskite-based multifunctional materials and enlightens conscious optimization of semiconductor-based heterostructures with desirable charge transfer for catalysis and optoelectronic applications.
AB - The ability to create perovskite-based heterostructures with desirable charge transfer characteristics represents an important endeavor to render a set of perovskite materials and devices with tunable optoelectronic properties. However, due to similar material selection and band alignment in type-II and Z-scheme heterostructures, it remains challenging to obtain perovskite-based heterostructures with a favorable electron transfer pathway for photocatalysis. Herein, we report a robust tailoring of effective charge transfer pathway in perovskite-based heterostructures via a type-II to Z-scheme transformation for highly efficient and selective photocatalytic CO2 reduction. Specifically, CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 heterostructures are synthesized and then investigated by ultrafast spectroscopy. Moreover, taking CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 as examples, operando experiments and theoretical calculations confirm that the type-II heterostructure could be readily transformed into a Z-scheme heterostructure through establishing a low-resistance Ohmic contact, which indicates that a fast electron transfer pathway is crucial in Z-scheme construction, as further demonstrated by CsPbBr3/Ag/TiO2 and CsPbBr3/MoS2 heterostructures. In contrast to pristine CsPbBr3 and CsPbBr3/TiO2, the CsPbBr3/Au/TiO2 heterostructure exhibits 5.4- and 3.0-fold enhancement of electron consumption rate in photocatalytic CO2 reduction. DFT calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy unveil that the superior CO selectivity is attributed to the lower energy of *CO desorption than that of hydrogenation to *HCO. This meticulous design sheds light on the modification of perovskite-based multifunctional materials and enlightens conscious optimization of semiconductor-based heterostructures with desirable charge transfer for catalysis and optoelectronic applications.
UR - http://www.scopus.com/inward/record.url?scp=85184522296&partnerID=8YFLogxK
U2 - 10.1021/jacs.3c12073
DO - 10.1021/jacs.3c12073
M3 - Article
C2 - 38271212
AN - SCOPUS:85184522296
SN - 0002-7863
VL - 146
SP - 3303
EP - 3314
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 5
ER -