Universal entanglement entropy in two-dimensional conformal quantum critical points

Benjamin Hsu, Michael Mulligan, Eduardo Fradkin, Eun Ah Kim

Research output: Contribution to journalArticlepeer-review

98 Scopus citations


We study the scaling behavior of the entanglement entropy of two-dimensional conformal quantum critical systems, i.e., systems with scale-invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that under quite general conditions, the entanglement entropy of a large and simply connected subsystem of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory

Original languageEnglish
Article number115421
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number11
StatePublished - 3 Mar 2009


Dive into the research topics of 'Universal entanglement entropy in two-dimensional conformal quantum critical points'. Together they form a unique fingerprint.

Cite this