Abstract
Herein, we discovered and reported oxygen vacancies in silicon oxycarbide containing granular palm shell activated carbon (Si-PSAC) as a photocatalyst under UV irradiation. A strong correlation between the atomic content of Si1+, oxygen vacancies and photocatalytic performance of Si-PSAC was obtained. Based on the electron paramagnetic resonance and photoluminescence analyses, Si-PSAC under UVA365 irradiation exhibited a higher donor density, better charge transfer and lower electron-hole recombination than that under the other light sources, leading to a higher O2·[sbnd] production efficiency. Si-PSAC exhibited effective removal performance for various anionic dyes and endocrine-disrupting chemicals under UVA365 irradiation. Continuous-flow column tests revealed the life span of Si-PSAC under UVA365 irradiation was extended by more than 16-fold compared to adsorption column. Since the oxygen vacancies can be created from the naturally present Si in the biomass derived Si-PSAC during the activation, this unexpected discovery of O2·[sbnd] production can extend commercially-available Si-PSAC into the full-scale photocatalysis.
Original language | English |
---|---|
Article number | 116757 |
Journal | Water Research |
Volume | 190 |
DOIs | |
State | Published - 15 Feb 2021 |
Bibliographical note
Publisher Copyright:© 2020
Keywords
- Adsorption
- Granular palm shell activated carbon
- Oxygen vacancies
- Photocatalyst
- Superoxide radical