Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities

Yanjie He, Young Jun Yoon, Yeu Wei Harn, Gill V. Biesold-McGee, Shuang Liang, Chun Hao Lin, Vladimir V. Tsukruk, Naresh Thadhani, Zhitao Kang, Zhiqun Lin

Research output: Contribution to journalArticlepeer-review

112 Scopus citations

Abstract

The past few years have witnessed rapid advances in the synthesis of high-quality perovskite nanocrystals (PNCs). However, despite the impressive developments, the stability of PNCs remains a substantial challenge. The ability to reliably improve stability of PNCs while retaining their individual nanometer size represents a critical step that underpins future advances in optoelectronic applications. Here, we report an unconventional strategy for crafting dual-shelled PNCs (i.e., polymer-ligated perovskite/SiO2 core/shell NCs) with exquisite control over dimensions, surface chemistry, and stabilities. In stark contrast to conventional methods, our strategy relies on capitalizing on judiciously designed star-like copolymers as nanoreactors to render the growth of core/shell NCs with controlled yet tunable perovskite core diameter, SiO2 shell thickness, and surface chemistry. Consequently, the resulting polymer-tethered perovskite/SiO2 core/shell NCs display concurrently a stellar set of substantially improved stabilities (i.e., colloidal stability, chemical composition stability, photostability, water stability), while having appealing solution processability, which are unattainable by conventional methods.

Original languageEnglish
Pages (from-to)eaax4424
JournalScience Advances
Volume5
Issue number11
DOIs
StatePublished - 1 Nov 2019

Bibliographical note

Publisher Copyright:
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Fingerprint

Dive into the research topics of 'Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities'. Together they form a unique fingerprint.

Cite this