Abstract
The ubiquitous field-effect transistor (FET) is widely used in modern digital integrated circuits, computers, communications, sensors, and other applications. However, reliable biological FET (bio-FET) is not available in real life due to the rigorous requirement for highly sensitive and selective bio-FET fabrication, which remains a challenging task. Here, we report an ultrasensitive and selective bio-FET created by the nanorings of molybdenum disulfide (MoS2) nanopores inspired by nuclear pore complexes. We characterize the nanoring of MoS2 nanopores by scanning transmission electron microscopy, Raman, and X-ray photoelectron spectroscopy spectra. After fabricating MoS2 nanopore rings-based bio-FET, we confirm edge-selective functionalization by the gold nanoparticle tethering test and the change of electrical signal of the bio-FET. Ultrahigh sensitivity of the MoS2 nanopore edge rings-based bio-FET (limit of detection of 1 ag/mL) and high selectivity are accomplished by effective coupling of the aptamers on the nanorings of the MoS2 nanopore edge for cortisol detection. We believe that MoS2 nanopore edge rings-based bio-FET would provide platforms for everyday biosensors with ultrahigh sensitivity and selectivity.
Original language | English |
---|---|
Pages (from-to) | 1826-1835 |
Number of pages | 10 |
Journal | ACS Nano |
Volume | 16 |
Issue number | 2 |
DOIs | |
State | Published - 22 Feb 2022 |
Bibliographical note
Publisher Copyright:© 2021 American Chemical Society
Keywords
- MoS bio-FET
- edge engineering
- edge functionalization
- nanopatterning
- ultrasensitive biosensor