Two-Photon Fluorescence Probe for Selective Monitoring of Superoxide in Live Cells and Tissues

Liyan Chen, Myoung Ki Cho, Di Wu, Hwan Myung Kim, Juyoung Yoon

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


The abnormal location or generation of superoxide radical anion (O2 •-) are implicated in many diseases, including cancers; thus, development of an efficient method to detect O2 •- is of great importance. Inspired by the fluorophore-governed selective manner to O2 •- and peroxynitrite (ONOO-) of previously reported phosphinate-based fluorescence probes, in this contribution, a phosphinothioate-containing probe, TPP, was designed. The probe exhibited easy accessibility through a one-step sequence and good photostability and biocompatibility. Interestingly, TPP showed high specificity and sensitivity to O2 •- over other reactive oxygen species/nitrogen species including ONOO-. Furthermore, with the assistance of two-photon microscopy, TPP was successfully applied for imaging endogenous O2 •- in live cells and tissues.

Original languageEnglish
JournalAnalytical Chemistry
StatePublished - 2019

Bibliographical note

Funding Information:
This study was supported financially by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2012R1A3A2048814 for J. Yoon and No. 2019R1A2B5B03100278 for H. M. Kim). The Korea Basic Science Institute (Western Seoul) is acknowledged for the LC/MS data. FAB mass spectral data were obtained from the Korea Basic Science Institute (Daegu) on a Jeol JMS 700 high-resolution mass spectrometer.

Publisher Copyright:
© 2019 American Chemical Society.


Dive into the research topics of 'Two-Photon Fluorescence Probe for Selective Monitoring of Superoxide in Live Cells and Tissues'. Together they form a unique fingerprint.

Cite this