TY - JOUR
T1 - Tunneling in the hydrogen-transfer reaction from a vitamin e analog to an inclusion complex of 2,2-diphenyl-1-picrylhydrazyl radical with β-cyclodextrin in an aqueous buffer solution at ambient temperature
AU - Nakanishi, Ikuo
AU - Shoji, Yoshimi
AU - Ohkubo, Kei
AU - Fukuzumi, Shunichi
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/12
Y1 - 2021/12
N2 - Recently, increasing attention has been paid to quantum mechanical behavior in biology. In this study, we investigated the involvement of quantum mechanical tunneling in the hydrogen-transfer reaction from Trolox, a water-soluble analog of vitamin E (α-tocopherol), to 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) in a phosphate buffer solution (0.05 M, pH 7.0). DPPH• was used as a reactivity model of reactive oxygen species and solubilized in water using β-cyclodextrin (β-CD). The second-order rate constants, kH and kD, in 0.05 M phosphate buffer solutions prepared with H2O (pH 7.0) and D2O (pD 7.0), respectively, were determined for the reaction between Trolox and DPPH•, using a stopped-flow technique at various temperatures (283–303 K). Large kinetic isotope effects (KIE, kH/kD) were observed for the hydrogen-transfer reaction from Trolox to the β-CD-solubilized DPPH• in the whole temperature range. The isotopic ratio of the Arrhenius prefactor (AH/AD = 0.003), as well as the isotopic difference in the activation energies (19 kJ mol−1), indicated that quantum mechanical tunneling plays a role in the reaction.
AB - Recently, increasing attention has been paid to quantum mechanical behavior in biology. In this study, we investigated the involvement of quantum mechanical tunneling in the hydrogen-transfer reaction from Trolox, a water-soluble analog of vitamin E (α-tocopherol), to 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) in a phosphate buffer solution (0.05 M, pH 7.0). DPPH• was used as a reactivity model of reactive oxygen species and solubilized in water using β-cyclodextrin (β-CD). The second-order rate constants, kH and kD, in 0.05 M phosphate buffer solutions prepared with H2O (pH 7.0) and D2O (pD 7.0), respectively, were determined for the reaction between Trolox and DPPH•, using a stopped-flow technique at various temperatures (283–303 K). Large kinetic isotope effects (KIE, kH/kD) were observed for the hydrogen-transfer reaction from Trolox to the β-CD-solubilized DPPH• in the whole temperature range. The isotopic ratio of the Arrhenius prefactor (AH/AD = 0.003), as well as the isotopic difference in the activation energies (19 kJ mol−1), indicated that quantum mechanical tunneling plays a role in the reaction.
KW - Antioxidant
KW - Hydrogen transfer
KW - Kinetic isotope effect
KW - Tunneling
UR - http://www.scopus.com/inward/record.url?scp=85120813260&partnerID=8YFLogxK
U2 - 10.3390/antiox10121966
DO - 10.3390/antiox10121966
M3 - Article
AN - SCOPUS:85120813260
SN - 2076-3921
VL - 10
JO - Antioxidants
JF - Antioxidants
IS - 12
M1 - 1966
ER -