Abstract
Transferrin (TF) is widely used as a tumor-targeting ligand for the delivery of anticancer drugs because the TF receptor is overexpressed on the surface of various fast-growing cancer cells. In this article, we report on TF nanoparticles as an siRNA delivery carrier for in vivo tumor-specific gene silencing. To produce siRNA carrying TF nanoparticles (NPs), both TF and siRNA were chemically modified with sulfhydryl groups that can build up self-cross-linked siRNA-TF NPs. Self-polymerized 5′-end thiol-modified siRNA (poly siRNA, psi) and thiolated transferrin (tTF) were spontaneously cross-linked to form stable NPs (psi-tTF NPs) under optimized conditions, and they could be reversibly degraded to release functional monomeric siRNA molecules under reductive conditions. Receptor-mediated endocytosis of TF induced rapid tumor-cell-specific uptake of the psi-tTF NPs, and the internalized NPs resulted in a downregulation of the target protein in red-fluorescent-protein-expressing melanoma cancer cells (RFP/B16F10) with negligible cytotoxicity. After systemic administration, the psi-tTF NPs showed marked accumulation at the tumor, leading to successful target-gene silencing in vivo. This psi-tTF NP system provided a safe and effective strategy for in vivo systemic siRNA delivery for cancer therapy.
Original language | English |
---|---|
Pages (from-to) | 1850-1860 |
Number of pages | 11 |
Journal | Bioconjugate Chemistry |
Volume | 24 |
Issue number | 11 |
DOIs | |
State | Published - 20 Nov 2013 |