TY - JOUR
T1 - Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging
AU - Nam, Taehwan
AU - Park, Sangjin
AU - Lee, Seung Young
AU - Park, Kyeongsoon
AU - Choi, Kuiwon
AU - Song, In Chan
AU - Han, Moon Hee
AU - Leary, James J.
AU - Yuk, Simseok Andrew
AU - Kwon, Ick Chan
AU - Kim, Kwangmeyung
AU - Jeong, Seo Young
PY - 2010/4/21
Y1 - 2010/4/21
N2 - We report tumor targeting nanoparticles for optical/MR dual imaging based on self-assembled glycol chitosan to be a potential multimodal imaging probe. To develop an optical/MR dual imaging probe, biocompatible and water-soluble glycol chitosan (Mw = 50 kDa) were chemically modified with 5β-cholanic acid (CA), resulting in amphiphilic glycol chitosan-5β- cholanic acid conjugates (GC-CA). For optical imaging near-infrared fluorescence (NIRF) dye, Cy5.5, was conjugated to GC-CA resulting in Cy5-labeled GC-CA conjugates (Cy5.5-GC-CA). Moreover, in order to chelate gadolinium (Gd(III)) in the Cy5.5-GC-CA conjugates, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was directly conjugated in Cy5.5-GC-CA. Finally, the excess GdCl3 was added to DOTA modified Cy5.5-GC-CA conjugates in distilled water (pH 5.5). The freshly prepared Gd(III) encapsulated Cy5.5-GC-CA conjugates were spontaneously self-assembled into stable Cy5.5 labeled and Gd(III) encapsulated chitosan nanoparticles (Cy5.5-CNP-Gd(III)). The Cy5.5-CNP-Gd(III) was spherical in shape and approximately 350 nm in size. From the cellular experiment, it was demonstrated that Cy5.5-CNP-Gd(III) were efficiently taken up and distributed in cytoplasm (NIRF filter; red). When the Cy5.5-GC-Gd(III) were systemically administrated into the tail vein of tumor-bearing mice, large amounts of nanoparticles were successfully localized within the tumor, which was confirmed by noninvasive near-infrared fluorescence and MR imaging system simultaneously. These results revealed that the dual-modal imaging probe of Cy5.5-CNP-Gd(III) has the potential to be used as an optical/MR dual imaging agent for cancer treatment.
AB - We report tumor targeting nanoparticles for optical/MR dual imaging based on self-assembled glycol chitosan to be a potential multimodal imaging probe. To develop an optical/MR dual imaging probe, biocompatible and water-soluble glycol chitosan (Mw = 50 kDa) were chemically modified with 5β-cholanic acid (CA), resulting in amphiphilic glycol chitosan-5β- cholanic acid conjugates (GC-CA). For optical imaging near-infrared fluorescence (NIRF) dye, Cy5.5, was conjugated to GC-CA resulting in Cy5-labeled GC-CA conjugates (Cy5.5-GC-CA). Moreover, in order to chelate gadolinium (Gd(III)) in the Cy5.5-GC-CA conjugates, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was directly conjugated in Cy5.5-GC-CA. Finally, the excess GdCl3 was added to DOTA modified Cy5.5-GC-CA conjugates in distilled water (pH 5.5). The freshly prepared Gd(III) encapsulated Cy5.5-GC-CA conjugates were spontaneously self-assembled into stable Cy5.5 labeled and Gd(III) encapsulated chitosan nanoparticles (Cy5.5-CNP-Gd(III)). The Cy5.5-CNP-Gd(III) was spherical in shape and approximately 350 nm in size. From the cellular experiment, it was demonstrated that Cy5.5-CNP-Gd(III) were efficiently taken up and distributed in cytoplasm (NIRF filter; red). When the Cy5.5-GC-Gd(III) were systemically administrated into the tail vein of tumor-bearing mice, large amounts of nanoparticles were successfully localized within the tumor, which was confirmed by noninvasive near-infrared fluorescence and MR imaging system simultaneously. These results revealed that the dual-modal imaging probe of Cy5.5-CNP-Gd(III) has the potential to be used as an optical/MR dual imaging agent for cancer treatment.
UR - http://www.scopus.com/inward/record.url?scp=77951261362&partnerID=8YFLogxK
U2 - 10.1021/bc900408z
DO - 10.1021/bc900408z
M3 - Article
C2 - 20201550
AN - SCOPUS:77951261362
SN - 1043-1802
VL - 21
SP - 578
EP - 582
JO - Bioconjugate Chemistry
JF - Bioconjugate Chemistry
IS - 4
ER -