TY - JOUR
T1 - Tumor suppressor cylindromatosis acts as a negative regulator for Streptococcus pneumoniae-induced NFAT signaling
AU - Koga, Tomoaki
AU - Jae, Hyang Lim
AU - Jono, Hirofumi
AU - Un, Hwan Ha
AU - Xu, Haidong
AU - Ishinaga, Hajime
AU - Morino, Saori
AU - Xu, Xiangbin
AU - Yan, Chen
AU - Kai, Hirofumi
AU - Li, Jian Dong
PY - 2008/5/2
Y1 - 2008/5/2
N2 - Gram-positive bacterium Streptococcus pneumoniae is an important human pathogen that colonizes the upper respiratory tract and is also the major cause of morbidity and mortality worldwide. S. pneumoniae causes invasive diseases such as pneumonia, meningitis, and otitis media. Despite the importance of pneumococcal diseases, little is known about the molecular mechanisms by which S. pneumoniae-induced inflammation is regulated, especially the negative regulatory mechanisms. Here we show that S. pneumoniae activates nuclear factor of activated T cells (NFAT) signaling pathway and the subsequent up-regulation of inflammatory mediators via a key pneumococcal virulence factor, pneumolysin. We also demonstrate that S. pneumoniae activates NFAT transcription factor independently of Toll-like receptors 2 and 4. Moreover, S. pneumoniae induces NFAT activation via both Ca2+-calcineurin and transforming growth factor-β-activated kinase 1 (TAK1)-mitogen-activated protein kinase kinase (MKK) 3/6-p38α/β-dependent signaling pathways. Interestingly, we found for the first time that tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for S. pneumoniae-induced NFAT signaling pathway via a deubiquitination-dependent mechanism. Finally, we showed that CYLD interacts with and deubiquitinates TAK1 to negatively regulate the activation of the downstream MKK3/6-p38α/β pathway. Our studies thus bring new insights into the molecular pathogenesis of S. pneumoniae infections through the NFAT-dependent mechanism and further identify CYLD as a negative regulator for NFAT signaling, thereby opening up new therapeutic targets for these diseases.
AB - Gram-positive bacterium Streptococcus pneumoniae is an important human pathogen that colonizes the upper respiratory tract and is also the major cause of morbidity and mortality worldwide. S. pneumoniae causes invasive diseases such as pneumonia, meningitis, and otitis media. Despite the importance of pneumococcal diseases, little is known about the molecular mechanisms by which S. pneumoniae-induced inflammation is regulated, especially the negative regulatory mechanisms. Here we show that S. pneumoniae activates nuclear factor of activated T cells (NFAT) signaling pathway and the subsequent up-regulation of inflammatory mediators via a key pneumococcal virulence factor, pneumolysin. We also demonstrate that S. pneumoniae activates NFAT transcription factor independently of Toll-like receptors 2 and 4. Moreover, S. pneumoniae induces NFAT activation via both Ca2+-calcineurin and transforming growth factor-β-activated kinase 1 (TAK1)-mitogen-activated protein kinase kinase (MKK) 3/6-p38α/β-dependent signaling pathways. Interestingly, we found for the first time that tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for S. pneumoniae-induced NFAT signaling pathway via a deubiquitination-dependent mechanism. Finally, we showed that CYLD interacts with and deubiquitinates TAK1 to negatively regulate the activation of the downstream MKK3/6-p38α/β pathway. Our studies thus bring new insights into the molecular pathogenesis of S. pneumoniae infections through the NFAT-dependent mechanism and further identify CYLD as a negative regulator for NFAT signaling, thereby opening up new therapeutic targets for these diseases.
UR - http://www.scopus.com/inward/record.url?scp=45549108765&partnerID=8YFLogxK
U2 - 10.1074/jbc.M710518200
DO - 10.1074/jbc.M710518200
M3 - Article
C2 - 18332137
AN - SCOPUS:45549108765
SN - 0021-9258
VL - 283
SP - 12546
EP - 12554
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 18
ER -