Tumor-specific apoptosis caused by deletion of the ERBB3 pseudo-kinase in mouse intestinal epithelium

Daekee Lee, Ming Yu, Eunjung Lee, Hyunok Kim, Yanan Yang, Kyoungmi Kim, Christina Pannicia, Jonathan M. Kurie, David W. Threadgill

Research output: Contribution to journalArticlepeer-review

78 Scopus citations


Pharmacologic blockade of EGFR or the closely related receptor ERBB2 has modest efficacy against colorectal cancers in the clinic. Although the upregulation of ERBB3, a pseudo-kinase member of the EGFR/ERBB family, is known to contribute to EGFR inhibitor resistance in other cancers, its functions in normal and malignant intestinal epithelium have not been defined. We have shown here that the intestinal epithelium of mice with intestine-specific genetic ablation of Erbb3 exhibits no cytological abnormalities but does exhibit loss of expression of ERBB4 and sensitivity to intestinal damage. By contrast, intestine-specific Erbb3 ablation resulted in almost complete absence of intestinal tumors in the ApcMin mouse model of colon cancer. Unlike nontransformed epithelium lacking ERBB3, intestinal tumors lacking ERBB3 had reduced PI3K/ AKT signaling, which led to attenuation of tumorigenesis via a tumor-specific increase in caspase-3-mediated apoptosis. Consistent with the mouse data, which suggest that ERBB3-ERBB4 heterodimers contribute to colon cancer survival, experimentally induced loss of ERBB3 in a KRAS mutant human colon cancer cell line was associated with loss of ERBB4 expression, and siRNA knockdown of either ERBB3 or ERBB4 resulted in elevated levels of apoptosis. These results indicate that the ERBB3 pseudo-kinase has essential roles in supporting intestinal tumorigenesis and suggest that ERBB3 may be a promising target for the treatment of colorectal cancers.

Original languageEnglish
Pages (from-to)2702-2713
Number of pages12
JournalJournal of Clinical Investigation
Issue number9
StatePublished - 1 Sep 2009


Dive into the research topics of 'Tumor-specific apoptosis caused by deletion of the ERBB3 pseudo-kinase in mouse intestinal epithelium'. Together they form a unique fingerprint.

Cite this