Abstract
Adrenal corticosteroid biosynthesis dysregulation can give rise to various pathological conditions, such as Cushing's syndrome, a disorder characterized by the sustained and excessive production of cortisol. Despite the development of several classes of steroidogenesis inhibitors to treat human diseases associated with cortisol overproduction, their use is limited by insufficient efficacy, adverse effects, and/or tolerability. Recently, we identified a series of benzimidazolylurea derivatives, including the representative compound CJ28, as novel cortisol biosynthesis inhibitors [1]. They significantly inhibited both basal and stimulated production of cortisol in NCI-H295R cells, a human adrenocarcinoma cell line. The inhibitory effects were attributed to both attenuated steroidogenesis and de novo cholesterol biosynthesis. Here, we provide transcriptomic (RNA-seq) data from adrenal cell cultures in response to treatment with either CJ28 or metyrapone (MET), an inhibitor of 11β-hydroxylase). Total RNA was extracted from the cells treated with vehicle (0.1% DMSO), CJ28 (30 µM), or MET (30 µM) for 24 h. Primary sequence data were acquired using paired-end sequencing on an Illumina NovaSeq 6000 platform. The raw RNA-seq data have been deposited in the Gene Expression Omnibus (GEO) database (GSE236435). This dataset is a useful resource for providing valuable information on the gene expression networks underlying adrenocortical steroidogenesis.
Original language | English |
---|---|
Article number | 109948 |
Journal | Data in Brief |
Volume | 52 |
DOIs | |
State | Published - Feb 2024 |
Bibliographical note
Publisher Copyright:© 2023
Keywords
- Adrenal gland
- Benzimidazolylureas
- Corticosteroid
- Cortisol
- Metyrapone
- NCI-H295R
- Steroidogenesis