TY - JOUR
T1 - Transcranial direct current stimulation for online gamers
AU - Chung, Yong An
AU - Lee, Sang Hoon
AU - Im, Jooyeon Jamie
AU - Oh, Jin Kyoung
AU - Choi, Eun Kyoung
AU - Yoon, Sujung
AU - Bikson, Marom
AU - Song, In Uk
AU - Jeong, Hyeonseok
N1 - Funding Information:
This study was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2015M3C7A1064832, 2015M3C7A1028373, 2018M3A6A3058651) and by the National Institutes of Health (NIHNIMH 1R01MH111896, NIH-NINDS 1R01NS101362).
Publisher Copyright:
© 2019 Journal of Visualized Experiments.
PY - 2019/11
Y1 - 2019/11
N2 - Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that applies a weak electric current to the scalp to modulate neuronal membrane potentials. Compared to other brain stimulation methods, tDCS is relatively safe, simple, and inexpensive to administer. Since excessive online gaming can negatively affect mental health and daily functioning, developing treatment options for gamers is necessary. Although tDCS over the dorsolateral prefrontal cortex (DLPFC) has demonstrated promising results for various addictions, it has not been tested in gamers. This paper describes a protocol and a feasibility study for applying repeated tDCS over the DLPFC and neuroimaging to examine the underlying neural correlates in gamers. At baseline, individuals who play online games report average weekly hours spent on games, complete questionnaires on addiction symptoms and self-control, and undergo brain18F-fluoro-2-deoxyglucose positron emission tomography (FDG-PET). The tDCS protocol consists of 12 sessions over the DLPFC for 4 weeks (anode F3/cathode F4, 2 mA for 30 min per session). Then, a follow-up is conducted using the same protocol as the baseline. Individuals who do not play online games receive only baseline FDG-PET scans without tDCS. Changes of clinical characteristics and asymmetry of regional cerebral metabolic rate of glucose (rCMRglu) in the DLPFC are examined in gamers. In addition, asymmetry of rCMRglu is compared between gamers and non-gamers at baseline. In our experiment, 15 gamers received tDCS sessions and completed baseline and follow-up scans. Ten non-gamers underwent FDG-PET scans at the baseline. The tDCS reduced addiction symptoms, time spent on games, and increased self-control. Moreover, abnormal asymmetry of rCMRglu in the DLPFC at baseline was alleviated after tDCS. The current protocol may be useful for assessing treatment efficacy of tDCS and its underlying brain changes in gamers. Further randomized sham-controlled studies are warranted. Moreover, the protocol can be applied to other neurological and psychiatric disorders.
AB - Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that applies a weak electric current to the scalp to modulate neuronal membrane potentials. Compared to other brain stimulation methods, tDCS is relatively safe, simple, and inexpensive to administer. Since excessive online gaming can negatively affect mental health and daily functioning, developing treatment options for gamers is necessary. Although tDCS over the dorsolateral prefrontal cortex (DLPFC) has demonstrated promising results for various addictions, it has not been tested in gamers. This paper describes a protocol and a feasibility study for applying repeated tDCS over the DLPFC and neuroimaging to examine the underlying neural correlates in gamers. At baseline, individuals who play online games report average weekly hours spent on games, complete questionnaires on addiction symptoms and self-control, and undergo brain18F-fluoro-2-deoxyglucose positron emission tomography (FDG-PET). The tDCS protocol consists of 12 sessions over the DLPFC for 4 weeks (anode F3/cathode F4, 2 mA for 30 min per session). Then, a follow-up is conducted using the same protocol as the baseline. Individuals who do not play online games receive only baseline FDG-PET scans without tDCS. Changes of clinical characteristics and asymmetry of regional cerebral metabolic rate of glucose (rCMRglu) in the DLPFC are examined in gamers. In addition, asymmetry of rCMRglu is compared between gamers and non-gamers at baseline. In our experiment, 15 gamers received tDCS sessions and completed baseline and follow-up scans. Ten non-gamers underwent FDG-PET scans at the baseline. The tDCS reduced addiction symptoms, time spent on games, and increased self-control. Moreover, abnormal asymmetry of rCMRglu in the DLPFC at baseline was alleviated after tDCS. The current protocol may be useful for assessing treatment efficacy of tDCS and its underlying brain changes in gamers. Further randomized sham-controlled studies are warranted. Moreover, the protocol can be applied to other neurological and psychiatric disorders.
KW - Behavior
KW - Brain glucose metabolism
KW - Dorsolateral prefrontal cortex
KW - Issue 153
KW - Online game
KW - Positron emission tomography
KW - Self-control
KW - Transcranial direct current stimulation
UR - http://www.scopus.com/inward/record.url?scp=85075556517&partnerID=8YFLogxK
U2 - 10.3791/60007
DO - 10.3791/60007
M3 - Article
C2 - 31762463
AN - SCOPUS:85075556517
VL - 2019
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
SN - 1940-087X
IS - 153
M1 - e60007
ER -