Abstract
Retinitis Pigmentosa (RP) is an inherited disorder that may lead to blindness. In the rhodopsin S334ter-line-3 rat model of RP, the death of rods induces spatial rearrangement of cones into regular ring mosaics. Using this model, we discovered that the ring mosaics are restored to a homogeneous distribution upon application of tissue inhibitor of metalloproteinase-1 (TIMP-1). In this study, we further investigated the cone migration and spatial distribution of second-order neurons and their connections to cones in the presence or absence of TIMP-1 using immunohistochemistry to identify retinal neurons and their connections with cones. M-opsin cell bodies and their outer segments were evaluated to determine whether TIMP-1 delays the degeneration of outer segments of cones. We observed that during cone rearrangement into ring mosaics in RP retina, dendritic processes of second-order neurons undergo remodeling to maintain their synaptic connections with the cones in the rings. TIMP-1 treatment induced the cones to rearrange and dendritic processes of second-order neurons to return to a more homogeneous spatial distribution. In addition, TIMP-1 treatment protected the outer segments of cones at later stages of retinal degeneration. Our findings clearly demonstrate that despite their dramatic spatial rearrangement, cones and second-order neuron processes maintain their synaptic connections before and after TIMP-1 treatment.
Original language | English |
---|---|
Pages (from-to) | 41-52 |
Number of pages | 12 |
Journal | Experimental Eye Research |
Volume | 140 |
DOIs | |
State | Published - 2015 |
Bibliographical note
Publisher Copyright:© 2015 Elsevier Ltd.
Keywords
- Bipolar cell
- Cone mosaic
- Cone outer segment
- Horizontal cell
- Retinitis pigmentosa
- Synaptic protein
- Tissue inhibitor of metalloproteinase-1(TIMP-1)