Thermoelectric properties of Bi-Te films with controlled structure and morphology

A. Li Bassi, A. Bailini, C. S. Casari, F. Donati, A. Mantegazza, M. Passoni, V. Russo, C. E. Bottani

Research output: Contribution to journalArticlepeer-review

88 Scopus citations

Abstract

A study of the thermoelectric transport properties of Bi-Te thin films with different structures and morphologies is here presented. Films were grown by pulsed laser deposition (PLD), which permits to control the composition, phase and crystallinity of the deposited material, and the morphology at the micrometer/nanometer scale. The carrier density and mobility at room temperature and the in plane electrical resistivity and Seebeck coefficient in the temperature range 300-400 K have been measured both for films characterized by a compact morphology and by the presence of different phases (Bi2 Te3, BiTe, and Bi4 Te3) and for Bi2 Te3 films with different morphologies at the micrometer/nanometer scale (from a compact structure to a less connected assembly of randomly oriented crystalline grains). The correlation among thermoelectric and structural properties has been investigated, showing the potential of PLD to produce n -type Bi-Te thin films with desired properties for peculiar applications. Films with a layered Bi2 Te3 structure show the best properties, with Seebeck coefficient in the range from -175 to -250 μV/K and power factor in the range 20-45 μW/cm K2, with expected ZT values greater than 1.5. Also films composed by partially randomly oriented submicrometer crystals look promising, since the smaller power factor (∼10 μW/cm K2) can in principle be compensated by a strong reduction of the phonon thermal conductivity via proper engineering of grain boundaries.

Original languageEnglish
Article number124307
JournalJournal of Applied Physics
Volume105
Issue number12
DOIs
StatePublished - 2009

Fingerprint

Dive into the research topics of 'Thermoelectric properties of Bi-Te films with controlled structure and morphology'. Together they form a unique fingerprint.

Cite this