Theoretical investigation on the elusive biomimetic iron(III)-iodosylarene chemistry: An unusual hydride transfer triggers the Ritter reaction

Lanping Gao, Xiaolu Chen, Dongru Sun, Hua Zhao, Yufen Zhao, Wonwoo Nam, Yong Wang

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Introduction of iodosylarnes into biomimetic nonheme chemistry has made great achievement on identification of the subtle metal-oxygen reaction intermediates. However, after more than three decades of experimental and theoretical efforts the nature of the metal-iodosylarene adducts and the related dichotomous one-oxidant/multiple-oxident controversy have remained a matter of speculation. Herein, we report a theoretical study of the structure-activity relationship of the noted iron(III)-iodsylarene complex, FeIII(PhIO)(OTf)3 (1), in oxygenation of cyclohexene. The calculated results revealed that 1 behaves like a chameleon by adapting its roles as a 2e-oxidant or an oxygen donor, as a response to the regioselective attack of the C–H bond and the C=C bond. The oxidative C–H bond activation by 1 was found, for the first time, to proceed via a novel hydride transfer process to form a cyclohexene carbonium intermediate, such non-rebound step triggers the Ritter reaction to uptake an acetonitrile molecule to form the amide product, or proceeds with the rebound of the hydroxyl group return to the solvent cage to form the hydroxylated product. While in the C=C bond activation, 1 is a normal oxygen donor and shows two-state reactivity to present the epoxide product via a direct oxygen atom transfer mechanism. These mechanistic findings fit and explain the famous Valentine's experiments and enrich the non-rebound scenario in bioinorganic chemistry.

Original languageEnglish
Pages (from-to)3857-3861
Number of pages5
JournalChinese Chemical Letters
Volume32
Issue number12
DOIs
StatePublished - Dec 2021

Keywords

  • DFT calculations
  • Metal-iodosylbenzene
  • Olefin oxidation
  • Reaction mechanism
  • Ritter reaction

Fingerprint

Dive into the research topics of 'Theoretical investigation on the elusive biomimetic iron(III)-iodosylarene chemistry: An unusual hydride transfer triggers the Ritter reaction'. Together they form a unique fingerprint.

Cite this