Abstract
We present theoretical and experimental investigations of three-terminal nanoelectromechanical relays based on suspended carbon nanotubes. A charge is induced in the nanotube by applying a voltage to an underlying gate electrode thus inducing the nanotube to bend and make contact with a drain electrode. Such devices have potential applications as fast switches, logic devices, memory elements and pulse generators. We describe two modes of operation: a contact mode where the nanotube makes physical contact with the drain electrode and a non-contact mode where electrical contact between the nanotube and the drain electrode is made via a field emission current.
Original language | English |
---|---|
Article number | 245 |
Journal | New Journal of Physics |
Volume | 7 |
DOIs | |
State | Published - 29 Nov 2005 |