The potential of vegetation feedback to alleviate climate aridity over the United States associated with a 2×CO2 climate condition

Chang Eui Park, Chang Hoi Ho, Su Jong Jeong, Jinwon Kim, Song Feng

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

This study examines the potential impact of vegetation feedback on changes in summer climate aridity over the contiguous United States (US) due to the doubling of atmospheric CO2 concentration using a set of 100-year-long climate simulations made by a global climate model interactively coupled with a dynamic vegetation model. The Thornthwaite moisture index (Im), which quantifies climate aridity on the basis of atmospheric water supply (i. e., precipitation) and atmospheric water demand (i. e., potential evapotranspiration, PET), is used to measure climate aridity. Warmer atmosphere and drier surface resulting from increased CO2 concentration increase climate aridity over most of the contiguous US. This phenomenon is due to larger increments in PET than in precipitation, regardless of the presence or absence of vegetation feedback. Compared to simulations without active dynamic vegetation feedback, the presence of vegetation feedback significantly alleviates the increase in aridity. This vegetation-feedback effect is most noticeable in the subhumid regions such as southern, midwestern and northwestern US, primarily by the increasing vegetation greenness. In these regions, the greening in response to warmer temperatures enhances moisture transfer from soil to atmosphere by evapotranspiration (ET). The increased ET and subsequent moistening over land areas result in weaker surface warming (1-2 K) and PET (3-10 mm month-1), and greater precipitation (4-10 mm month-1). Collectively, they result in moderate increases in Im. Our results suggest that moistening by enhanced vegetation feedback may prevent aridification under climatic warming especially in areas vulnerable to climate change, with consequent implications for mitigation strategies.

Original languageEnglish
Pages (from-to)1489-1500
Number of pages12
JournalClimate Dynamics
Volume38
Issue number7-8
DOIs
StatePublished - Apr 2012

Keywords

  • Climate aridity
  • Climate change
  • Dynamic vegetation model
  • Global warming
  • Thornthwaite moisture index
  • United States
  • Vegetation feedback

Fingerprint

Dive into the research topics of 'The potential of vegetation feedback to alleviate climate aridity over the United States associated with a 2×CO2 climate condition'. Together they form a unique fingerprint.

Cite this