The polymorphism and the geographical distribution of the knockdown resistance (kdr) of Anopheles sinensis in the Republic of Korea

Seunghyun Kang, Jongwoo Jung, Sanghui Lee, Heeseung Hwang, Won Kim

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


Background: In the Republic of Korea (ROK), six sibling species of the Anopheles sinensis complex are considered the vector species of malaria, but data on their susceptibilities to malaria and vector capacities have been controversial. The intensive use of insecticides has contributed to the rapid development and spread of insecticide resistance in the An. sinensis complex. Knockdown resistance (kdr) to pyrethroids and DDT in the An. sinensis complex is associated with a mutation in codon 1014 of the voltage-gated sodium channel (VGSC) gene. Because the degree of insecticide resistance varies among mosquito species and populations, the detection of kdr mutations among the six sibling species of the An. sinensis complex is a prerequisite for establishing effective long-term vector control strategies in the ROK. Methods: In order to investigate species-specific kdr mutations, An. sinensis complex specimens have been collected from 22 sites in the ROK. Because of the difficulties with species identifications that are based only on morphological characteristics, molecular identification methods have been conducted on every specimen. Part of the IIS6 domain of the VGSC was polymerase chain reaction-amplified and directly sequenced. Results: The molecular analyses revealed that mutations existed at codon 1014 only in An. sinensis sensu stricto and no mutations were found in the other five Anopheles species. In An. sinensis s.s., one wild type (TTG L1014) and three mutant types (TTT L1014F, TTC L1014F, and TGT L1014C) of kdr alleles were detected. The TTC L1014F mutation was observed for the first time in this species. Conclusions: The fact that the highly polymorphic kdr gene is only observed in An. sinensis s.s., out of the six Anopheles species and their geographical distribution suggest the need for future studies of insecticide resistance monitoring and investigations of species-specific resistance mechanisms in order to build successful malaria vector control programmes in the ROK.

Original languageEnglish
Article number151
JournalMalaria Journal
StatePublished - 2012

Bibliographical note

Funding Information:
We would like to thank Professor Han-Il Ree (Department of Parasitology and Institute of Tropical Medicine, College of Medicine, Yonsei University) for field collections of mosquito specimens. This work was supported by the BK21 Research Fellowship from the Ministry of Education, Science and Technology, Republic of Korea.


  • Anopheles sinensis
  • Kdr genotype
  • Knockdown resistance
  • Pyrethroid


Dive into the research topics of 'The polymorphism and the geographical distribution of the knockdown resistance (kdr) of Anopheles sinensis in the Republic of Korea'. Together they form a unique fingerprint.

Cite this