The mitochondrial genome of Faughnia haani (Stomatopoda): novel organization of the control region and phylogenetic position of the superfamily Parasquilloidea

Hee seung Hwang, Jongwoo Jung, Juan Antonio Baeza

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Stomatopod crustaceans are aggressive marine predators featuring complex compound eyes and powerful raptorial appendages used for “smashing” or “spearing” prey and/or competitors. Among them, parasquilloids (superfamily Parasquilloidea) possess eyes with 2-3 midband rows of hexagonal ommatidia and spearing appendages. Here, we assembled and analyzed the complete mitochondrial genome of the parasquilloid Faughnia haani and explored family- and superfamily-level phylogenetic relationships within the Stomatopoda based on mitochondrial protein coding genes (PCGs). Results: The mitochondrial genome of F. haani is 16,089 bp in length and encodes 13 protein coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region that is relatively well organized, containing 2 GA-blocks, 4 poly-T stretches, various [TA(A)]n-blocks, and 2 hairpin structures. This organized control region is likely a synapomorphic characteristic in the Stomatopoda. Comparison of the control region among superfamilies shows that parasquilloid species are more similar to gonodactyloids than to squilloids and lysiosquilloids given the presence of various poly-T stretches between the hairpin structures and [TA(A)]n-blocks. Synteny is identical to that reported for other stomatopods and corresponds to the Pancrustacea ground pattern. A maximum-likelihood phylogenetic tree based on PCGs revealed that Parasquilloidea is sister to Lysiosquilloidea and Gonodactyloidea and not to Squilloidea, contradicting previous phylogenetic studies. Conclusions: The novel phylogenetic position of Parasquilloidea revealed by our study indicates that ‘spearing’ raptorial appendages are plesiomorphic and that the ‘smashing’ type is either derived (as reported in previous studies) or apomorphic. Our results raise the possibility that the spearing raptorial claw may have independently evolved twice. The superfamily Parasquilloidea exhibits a closer relationship with other stomatopod superfamilies with a different raptorial claw type and with dissimilar numbers of midband rows of hexagonal ommatidia. Additional studies focusing on the assembly of mitochondrial genomes from species belonging to different genera, families, and superfamilies within the order Stomatopoda are warranted to reach a robust conclusion regarding the evolutionary history of this iconic clade based on mitochondrial PCGs.

Original languageEnglish
Article number716
JournalBMC Genomics
Volume22
Issue number1
DOIs
StatePublished - Dec 2021

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2017R1D1A2B04033088). Also, it was a part of the project titled ‘Improvement of management strategies on marine disturbing and harmful organisms’ funded by the Ministry of Oceans and Fisheries (MOF) (No. 20190518).

Publisher Copyright:
© 2021, The Author(s).

Keywords

  • Control region organization
  • Mitochondrial genome
  • Parasquilloidea
  • Raptorial claw
  • Stomatopoda
  • Vision

Fingerprint

Dive into the research topics of 'The mitochondrial genome of Faughnia haani (Stomatopoda): novel organization of the control region and phylogenetic position of the superfamily Parasquilloidea'. Together they form a unique fingerprint.

Cite this