TY - JOUR
T1 - The in vivo and in vitro roles of epithelial pattern recognition receptors in pneumococcal infections
AU - Shin, Seul Gi
AU - Koh, Seo Hyun
AU - Lim, Jae Hyang
PY - 2014
Y1 - 2014
N2 - Streptococcus pneumoniae, also called pneumococcus, is a major cause of infectious disease in human. Pneumococcus resides in the nasopharynx as an upper respiratory commensal, and most of pneumococcal colonizations are asymptomatic in immunocompetent individuals. When nasopharyngeal mucosal homeostasis is disrupted, pneumococcus migrates into middle ear and lower respiratory tract and causes detrimental colonization. In this regard, the epithelial cells of middle ear and lung act as first line of defense against pneumococcus to prevent invasive pneumococcal diseases. Respiratory epithelial cells express various cell-surface and intra-cellular receptors sensing microbial pathogens and respond to sensed pathogens by triggering intra-cellular signaling pathways and inducing pathogen-specific innate immune responses. Various epithelial cell-surface and intra-cellular receptors, such as Toll-like receptors (TLRs), Nod-like receptors (NLRs), intracellular DNA sensing receptors, and scavenger receptors (SRs), participate in sensing of pneumococcus, and the activation of these receptors by pneumococcal components induces anti-pneumococcal innate immune responses including epithelial apoptosis and inflammatory cytokine/chemokine expressions. Epithelial sensing of pneumococcus is a critical step for setting an early defense against pneumococcal infection, and also is required to recruit and activate innate immune cells and trigger adaptive immunity.
AB - Streptococcus pneumoniae, also called pneumococcus, is a major cause of infectious disease in human. Pneumococcus resides in the nasopharynx as an upper respiratory commensal, and most of pneumococcal colonizations are asymptomatic in immunocompetent individuals. When nasopharyngeal mucosal homeostasis is disrupted, pneumococcus migrates into middle ear and lower respiratory tract and causes detrimental colonization. In this regard, the epithelial cells of middle ear and lung act as first line of defense against pneumococcus to prevent invasive pneumococcal diseases. Respiratory epithelial cells express various cell-surface and intra-cellular receptors sensing microbial pathogens and respond to sensed pathogens by triggering intra-cellular signaling pathways and inducing pathogen-specific innate immune responses. Various epithelial cell-surface and intra-cellular receptors, such as Toll-like receptors (TLRs), Nod-like receptors (NLRs), intracellular DNA sensing receptors, and scavenger receptors (SRs), participate in sensing of pneumococcus, and the activation of these receptors by pneumococcal components induces anti-pneumococcal innate immune responses including epithelial apoptosis and inflammatory cytokine/chemokine expressions. Epithelial sensing of pneumococcus is a critical step for setting an early defense against pneumococcal infection, and also is required to recruit and activate innate immune cells and trigger adaptive immunity.
KW - Epithelial cell
KW - Inflammation
KW - Pattern recognition receptor
KW - Pneumococcus
KW - Streptococcus pneumoniae
UR - http://www.scopus.com/inward/record.url?scp=84908342586&partnerID=8YFLogxK
U2 - 10.4167/jbv.2014.44.2.121
DO - 10.4167/jbv.2014.44.2.121
M3 - Review article
AN - SCOPUS:84908342586
SN - 1598-2467
VL - 44
SP - 121
EP - 132
JO - Journal of Bacteriology and Virology
JF - Journal of Bacteriology and Virology
IS - 2
ER -