The feasibility of MR elastography with transpelvic vibration for localization of focal prostate lesion

Hyo Jeong Lee, Soo Buem Cho, Jeong Kyong Lee, Jin Sil Kim, Chang Hoon Oh, Hyun Jin Kim, Hana Yoon, Hyun Kyu Ahn, Myong Kim, Yeok Gu Hwang, Hye Young Kwon, Moon Jung Hwang

Research output: Contribution to journalArticlepeer-review

Abstract

We aimed to evaluate the feasibility of MR elastography (MRE) using a transpelvic approach. Thirty-one patients who underwent prostate MRE and had a pathological diagnosis were included in this study. MRE was obtained using a passive driver placed at the umbilicus and iliac crests. The shear stiffness, clinical data, and conventional imaging findings of prostate cancer and benign prostatic hyperplasia (BPH) were compared. Inter-reader agreements were evaluated using the intraclass coefficient class (ICC). Prostate MRE was successfully performed for all patients (100% technical success rate). Nineteen cancer and 10 BPH lesions were visualized on MRE. The mean shear stiffness of cancer was significantly higher than that of BPH (5.99 ± 1.46 kPa vs. 4.67 ± 1.54 kPa, p = 0.045). One cancer was detected on MRE but not on conventional sequences. Six tiny cancer lesions were not visualized on MRE. The mean size of cancers that were not detected on MRE was smaller than that of cancers that were visible on MRE (0.8 ± 0.3 cm vs. 2.3 ± 1.8 cm, p = 0.001). The inter-reader agreement for interpreting MRE was excellent (ICC = 0.95). Prostate MRE with transpelvic vibration is feasible without intracavitary actuators. Transpelvic prostate MRE is reliable for detecting focal lesions, including clinically significant prostate cancer and BPH.

Original languageEnglish
Article number3864
JournalScientific Reports
Volume14
Issue number1
DOIs
StatePublished - Dec 2024

Bibliographical note

Publisher Copyright:
© The Author(s) 2024.

Fingerprint

Dive into the research topics of 'The feasibility of MR elastography with transpelvic vibration for localization of focal prostate lesion'. Together they form a unique fingerprint.

Cite this