Abstract
This study was designed to develop a skin permeable recombinant low-molecular-weight protamine (LMWP) conjugated epidermal growth factor (EGF) (rLMWP-EGF) by linking a highly positive charged LMWP to the N-terminal of EGF through genetic recombination. We evaluated its biological activity, skin permeability, and wound healing efficacy in vivo. The cDNA for rLMWP-EGF was prepared by serial polymerase chain reaction for encoding amino acids of LMWP to the vector for EGF. After expression and purification, recombinant EGF site-specifically conjugated with LMWP was obtained. The in vitro cell proliferation activity was well preserved after LMWP conjugation and was comparable to that of rEGF. rLMWP-EGF showed markedly improved permeability through the three-dimensional artificial human skin constructs, and the cumulative permeation of rLMWP-EGF across the excised mouse skin was about 11 times higher than that of rEGF. Topically applied rLMWP-EGF significantly accelerated the wound closure rate in full thickness as well as a diabetic wound model most probably due to its enhanced skin permeation. These findings demonstrate the therapeutic potential of rLMWP-EGF as a new topical wound healing drug and the site-specific conjugation of LMWP to peptides or proteins by genetic recombination as a useful method for preparing highly effective biomedicines.
Original language | English |
---|---|
Pages (from-to) | 8579-8590 |
Number of pages | 12 |
Journal | Biomaterials |
Volume | 33 |
Issue number | 33 |
DOIs | |
State | Published - Nov 2012 |
Keywords
- Epidermal growth factor
- Low-molecular-weight protamine
- Protein transduction domain
- Topical delivery
- Transdermal delivery
- Wound healing