TY - JOUR
T1 - The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells
AU - Wang, Bing
AU - Iocozzia, James
AU - Zhang, Meng
AU - Ye, Meidan
AU - Yan, Shicheng
AU - Jin, Huile
AU - Wang, Shun
AU - Zou, Zhigang
AU - Lin, Zhiqun
N1 - Publisher Copyright:
© 2019 The Royal Society of Chemistry.
PY - 2019/9/21
Y1 - 2019/9/21
N2 - Perovskites have been firmly established as one of the most promising materials for third-generation solar cells. There remain several great and lingering challenges to be addressed regarding device efficiency and stability. The photovoltaic efficiency of perovskite solar cells (PSCs) depends drastically on the charge-carrier dynamics. This complex process includes charge-carrier generation, extraction, transport and collection, each of which needs to be modulated in a favorable manner to achieve high performance. Two-dimensional materials (TDMs) including graphene and its derivatives, transition metal dichalcogenides (e.g., MoS2, WS2), black phosphorus (BP), metal nanosheets and two-dimensional (2D) perovskite active layers have attracted much attention for application in perovskite solar cells due to their high carrier mobility and tunable work function properties which greatly impact the charge carrier dynamics of PSCs. To date, significant advances have been achieved in the field of TDM-based PSCs. In this review, the recent progress in the development and application of TDMs (i.e., graphene, graphdiyne, transition metal dichalcogenides, BP, and others) as electrodes, hole transporting layers, electron transporting layers and buffer layers in PSCs is detailed. 2D perovskites as active absorber materials in PSCs are also summarized. The effect of TDMs and 2D perovskites on the charge carrier dynamics of PSCs is discussed to provide a comprehensive understanding of their optoelectronic processes. The challenges facing the PSC devices are emphasized with corresponding solutions to these problems provided with the overall goal of improving the efficiency and stability of photovoltaic devices.
AB - Perovskites have been firmly established as one of the most promising materials for third-generation solar cells. There remain several great and lingering challenges to be addressed regarding device efficiency and stability. The photovoltaic efficiency of perovskite solar cells (PSCs) depends drastically on the charge-carrier dynamics. This complex process includes charge-carrier generation, extraction, transport and collection, each of which needs to be modulated in a favorable manner to achieve high performance. Two-dimensional materials (TDMs) including graphene and its derivatives, transition metal dichalcogenides (e.g., MoS2, WS2), black phosphorus (BP), metal nanosheets and two-dimensional (2D) perovskite active layers have attracted much attention for application in perovskite solar cells due to their high carrier mobility and tunable work function properties which greatly impact the charge carrier dynamics of PSCs. To date, significant advances have been achieved in the field of TDM-based PSCs. In this review, the recent progress in the development and application of TDMs (i.e., graphene, graphdiyne, transition metal dichalcogenides, BP, and others) as electrodes, hole transporting layers, electron transporting layers and buffer layers in PSCs is detailed. 2D perovskites as active absorber materials in PSCs are also summarized. The effect of TDMs and 2D perovskites on the charge carrier dynamics of PSCs is discussed to provide a comprehensive understanding of their optoelectronic processes. The challenges facing the PSC devices are emphasized with corresponding solutions to these problems provided with the overall goal of improving the efficiency and stability of photovoltaic devices.
UR - http://www.scopus.com/inward/record.url?scp=85072234049&partnerID=8YFLogxK
U2 - 10.1039/c9cs00254e
DO - 10.1039/c9cs00254e
M3 - Review article
C2 - 31389932
AN - SCOPUS:85072234049
SN - 0306-0012
VL - 48
SP - 4854
EP - 4891
JO - Chemical Society Reviews
JF - Chemical Society Reviews
IS - 18
ER -