TY - JOUR
T1 - Telmisartan attenuates hyperglycemia-exacerbated VCAM-1 expression and monocytes adhesion in TNFα-stimulated endothelial cells by inhibiting IKKβ expression
AU - Song, Kee Ho
AU - Park, Jung Hyun
AU - Jo, Inho
AU - Park, Joong Yeol
AU - Seo, Jungwon
AU - Kim, Soon Ae
AU - Cho, Du Hyong
N1 - Funding Information:
This paper was written as part of Konkuk University's research support program for its faculty on sabbatical leave in 2009 and this work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0062484).
Publisher Copyright:
© 2015 Elsevier Inc.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - Uncontrolled hyperglycemia accelerates endothelial damage and vascular inflammation caused by proinflammatory cytokines including tumor necrosis factor α (TNFα), which leads to arteriosclerotic cardiovascular diseases such as myocardial infarction. Telmisartan, an angiotensin II type 1 receptor blocker (ARB), is prescribed for treatment of hypertensive patients with concurrent diabetes mellitus (DM). Although a few clinical trials have suggested that telmisartan decreases cardiovascular complications in diabetic patients, the molecular mechanism for the beneficial effects remains elusive. Here, we investigated a molecular mechanism and effects of telmisartan on the expression of vascular cell adhesion molecule-1 (VCAM-1) and attachment of monocytes onto endothelial cells induced by TNFα in hyperglycemia-treated bovine aortic endothelial cells (BAEC). Telmisartan dose-dependently decreased hyperglycemia-aggravated IκB kinase β (IKKβ) expression and nuclear factor-κB (NF-κB) p65-Ser536 phosphorylation, which accompanied a decrease in VCAM-1 expression and THP-1 monocytes adhesion. Among ARBs, including losartan and fimasartan, only telmisartan showed the inhibitory effects on expression of VCAM-1 and IKKβ, and phosphorylation of NF-κB p65-Ser536. The telmisartan's beneficial effects were not changed by pretreatment with GW9662, a specific and irreversible peroxisome proliferator-activated receptor γ (PPARγ) antagonist, although GW9662 clearly inhibited rosiglitazone-induced CD36 expression. Finally, ectopic expression of wild type (WT)-IKKβ significantly restored telmisartan-attenuated VCAM-1 expression, NF-κB p65-Ser536 phosphorylation, and THP-1 monocytes adhesion. Taken together, our findings demonstrate that telmisartan ameliorates hyperglycemia-exacerbated vascular inflammation, at least in part, by decreasing expression of IKKβ and VCAM-1 independently of PPARγ. Telmisartan may be useful for the treatment of DM-associated vascular inflammation and cardiovascular diseases.
AB - Uncontrolled hyperglycemia accelerates endothelial damage and vascular inflammation caused by proinflammatory cytokines including tumor necrosis factor α (TNFα), which leads to arteriosclerotic cardiovascular diseases such as myocardial infarction. Telmisartan, an angiotensin II type 1 receptor blocker (ARB), is prescribed for treatment of hypertensive patients with concurrent diabetes mellitus (DM). Although a few clinical trials have suggested that telmisartan decreases cardiovascular complications in diabetic patients, the molecular mechanism for the beneficial effects remains elusive. Here, we investigated a molecular mechanism and effects of telmisartan on the expression of vascular cell adhesion molecule-1 (VCAM-1) and attachment of monocytes onto endothelial cells induced by TNFα in hyperglycemia-treated bovine aortic endothelial cells (BAEC). Telmisartan dose-dependently decreased hyperglycemia-aggravated IκB kinase β (IKKβ) expression and nuclear factor-κB (NF-κB) p65-Ser536 phosphorylation, which accompanied a decrease in VCAM-1 expression and THP-1 monocytes adhesion. Among ARBs, including losartan and fimasartan, only telmisartan showed the inhibitory effects on expression of VCAM-1 and IKKβ, and phosphorylation of NF-κB p65-Ser536. The telmisartan's beneficial effects were not changed by pretreatment with GW9662, a specific and irreversible peroxisome proliferator-activated receptor γ (PPARγ) antagonist, although GW9662 clearly inhibited rosiglitazone-induced CD36 expression. Finally, ectopic expression of wild type (WT)-IKKβ significantly restored telmisartan-attenuated VCAM-1 expression, NF-κB p65-Ser536 phosphorylation, and THP-1 monocytes adhesion. Taken together, our findings demonstrate that telmisartan ameliorates hyperglycemia-exacerbated vascular inflammation, at least in part, by decreasing expression of IKKβ and VCAM-1 independently of PPARγ. Telmisartan may be useful for the treatment of DM-associated vascular inflammation and cardiovascular diseases.
KW - Fimasartan (PubChem CID: 9,870,652)
KW - Hyperglycemia
KW - IKKβ
KW - Losartan (PubChem CID: 3961)
KW - Telmisartan
KW - Telmisartan (PubChem CID: 65,999)
KW - Vascular inflammation
KW - VCAM-1
UR - http://www.scopus.com/inward/record.url?scp=84959112436&partnerID=8YFLogxK
U2 - 10.1016/j.vph.2015.10.001
DO - 10.1016/j.vph.2015.10.001
M3 - Article
C2 - 26455386
AN - SCOPUS:84959112436
SN - 1537-1891
VL - 78
SP - 43
EP - 52
JO - Vascular Pharmacology
JF - Vascular Pharmacology
ER -