TY - JOUR
T1 - Synthesis, performance, and mechanisms of strontium ferrite-incorporated zeolite imidazole framework (ZIF-8) for the simultaneous removal of Pb(II) and tetracycline
AU - Kim, Gyuri
AU - Yea, Yeonji
AU - Njaramba, Lewis Kamande
AU - Yoon, Yeomin
AU - Kim, Sewoon
AU - Park, Chang Min
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/9
Y1 - 2022/9
N2 - In this study, strontium ferrite (SF)-incorporated zeolite imidazole framework (ZIF-8) (SFZIF-8) that can simultaneously uptake Pb(II) and tetracycline (TC) in solution was synthesized and characterized. The physicochemical properties of the as-prepared SFZIF-8 were characterized by various functional groups, higher average pore diameter (3.414 nm), and stronger negative charge (−30.5 mV). Adsorption kinetics, isotherms, effect of various water conditions including solution pH and temperature, and reusability were studied to evaluate its adsorption performance. The adsorption capacity of SFZIF-8 was compared with that of commonly used adsorbents (powder and granular activated carbon). SFZIF-8 showed much higher adsorption performance (429.6 mg/g and 433.4 mg/g for Pb(II) and TC, respectively) than powder activated carbon (129.9 mg/g and 142.0 mg/g for Pb(II) and TC, respectively) and granular activated carbon (249.3 mg/g and 263.0 mg/g for Pb(II) and TC, respectively) in Pb(II) and TC binary solutions. The SFZIF-8 adsorption behaviors for the removal of Pb(II) and TC were explained by the pseudo-first-order and Langmuir models from the adsorption kinetics and isotherm experiments, respectively. The regenerated SFZIF-8 exhibited a competitive performance even after the third cycle. These results indicate that Pb(II) and TC can be removed with SFZIF-8 via electrostatic attraction, surface complexation, hydrogen bonding, and π–π interactions. Therefore, by exhibiting effective and efficient adsorption performance, SFZIF-8 nanocomposites can be utilized as alternative and promising adsorbents for the simultaneous removal of both Pb(II) and TC.
AB - In this study, strontium ferrite (SF)-incorporated zeolite imidazole framework (ZIF-8) (SFZIF-8) that can simultaneously uptake Pb(II) and tetracycline (TC) in solution was synthesized and characterized. The physicochemical properties of the as-prepared SFZIF-8 were characterized by various functional groups, higher average pore diameter (3.414 nm), and stronger negative charge (−30.5 mV). Adsorption kinetics, isotherms, effect of various water conditions including solution pH and temperature, and reusability were studied to evaluate its adsorption performance. The adsorption capacity of SFZIF-8 was compared with that of commonly used adsorbents (powder and granular activated carbon). SFZIF-8 showed much higher adsorption performance (429.6 mg/g and 433.4 mg/g for Pb(II) and TC, respectively) than powder activated carbon (129.9 mg/g and 142.0 mg/g for Pb(II) and TC, respectively) and granular activated carbon (249.3 mg/g and 263.0 mg/g for Pb(II) and TC, respectively) in Pb(II) and TC binary solutions. The SFZIF-8 adsorption behaviors for the removal of Pb(II) and TC were explained by the pseudo-first-order and Langmuir models from the adsorption kinetics and isotherm experiments, respectively. The regenerated SFZIF-8 exhibited a competitive performance even after the third cycle. These results indicate that Pb(II) and TC can be removed with SFZIF-8 via electrostatic attraction, surface complexation, hydrogen bonding, and π–π interactions. Therefore, by exhibiting effective and efficient adsorption performance, SFZIF-8 nanocomposites can be utilized as alternative and promising adsorbents for the simultaneous removal of both Pb(II) and TC.
KW - Adsorption
KW - Lead
KW - Strontium ferrite
KW - Tetracycline
KW - Zeolite imidazole framework
UR - http://www.scopus.com/inward/record.url?scp=85129995833&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2022.113419
DO - 10.1016/j.envres.2022.113419
M3 - Article
C2 - 35537499
AN - SCOPUS:85129995833
SN - 0013-9351
VL - 212
JO - Environmental Research
JF - Environmental Research
M1 - 113419
ER -