Abstract
We synthesized a new poly(triphenylamine), having a hyperbranched structure, and employed it in lithium-ion batteries as an organic cathode material. Two types of monomers were prepared with hydroxyl groups and nitro leaving groups, activated by a trifluoromethyl substituent, and then polymerized via the nucleophilic aromatic substitution reaction. The reactivity of the monomers differed depending on the number of hydroxyl groups and the A2B type monomer with one hydroxyl group successfully produced poly(triphenylamine). Based on thermal, optical, and electrochemical analyses, a composite poly(triphenylamine) electrode was made. The electrochemical performance investigations confirmed that the lithium-ion batteries, fabricated with the poly(triphenylamine)-based cathodes, had reasonable specific capacity values and stable cycling performance, suggesting the potential of this hyperbranched polymer in cathode materials for lithium-ion batteries.
Original language | English |
---|---|
Article number | 7885 |
Journal | Materials |
Volume | 14 |
Issue number | 24 |
DOIs | |
State | Published - 1 Dec 2021 |
Bibliographical note
Publisher Copyright:© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Hyperbranched poly(triphenylamine)
- Lithium-ion battery
- Polymer cathode
- SAr reaction
- Triphenylamine