Abstract
A series of hollow Pd nanoshells are prepared by employing Co nanoparticles as sacrificial templates with different concentrations of a Pd precursor (1, 6, 12, 20, and 40 mM K2PdCl4), denoted hPd-X (X: concentration of K2PdCl4 in mM unit). The synthesized hPd series are tested as a cathodic electrocatalyst for oxygen reduction reaction (ORR) in alkaline solution. The morphology and surface area of the hPd catalysts are characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and cyclic voltammetry (CV). Rotating disk electrode (RDE) voltammetric studies show that the hPd-20 (prepared using 20 mM K2PdCl4) has the highest ORR activity among all the hPd series, while being comparable to commercial Pd and Pt catalysts (E-TEK). The more facilitated ORR at hPd-20 is presumably induced by the enhanced Pd surface area and efficiently high porosity of Pd nanoshells.
Original language | English |
---|---|
Pages (from-to) | 11461-11467 |
Number of pages | 7 |
Journal | Physical Chemistry Chemical Physics |
Volume | 15 |
Issue number | 27 |
DOIs | |
State | Published - 21 Jul 2013 |