TY - JOUR
T1 - Synthesis and characterization of novel ferrocene-containing pyridylamine ligands and their ruthenium(II) complexes
T2 - Electronic communication through hydrogen-bonded amide linkage
AU - Kojima, Takahiko
AU - Noguchi, Daisuke
AU - Nakayama, Tomoko
AU - Inagaki, Yuji
AU - Shiota, Yoshihito
AU - Yoshizawa, Kazunari
AU - Ohkubo, Kei
AU - Fukuzumi, Shunichi
PY - 2008/2/4
Y1 - 2008/2/4
N2 - Tris(2-pyridylmethyl)amine (TPA) derivatives with one or two ferrocenoylamide moieties at the 6-position of one or two pyridine rings of TPA were synthesized. The compounds, N-(6-ferrocenoylamide-2-pyridylmethyl)-N,N- bis(2-pyridylmethyl)amine (Fc-TPA; L1) and N,N-bis(6-ferrocenoylamide-2- pyridylmethyl)-N-(2-pyridylmethyl)amine (Fc2-TPA; L2), were characterized by spectroscopic methods, cyclic voltammetry, and X-ray crystallography. Their Ru(II) complexes were also prepared and characterized by spectroscopic methods, cyclic voltammetry, and X-ray crystallography. [RuCl(L1)(DMSO)]PF6 (1) that contains S-bound dimethyl sulfoxide (DMSO) as a ligand and an uncoordinated ferrocenoylamide moiety exhibited two redox waves at 0.23 and 0.77 V (vs ferrocene/ferrocenium ion as 0 V), due to Fc/Fc+ and Ru(II)/Ru(III) redox couples, respectively. [RuCl(L2)]PF6 (2) that contains both coordinated and uncoordinated amide moieties showed two redox waves that were observed at 0.27 V (two electrons) and 0.46 V (one electron), assignable to Ru(II)/Ru(III) redox couples overlapped with the uncoordinated Fc/Fc+ redox couple and the coordinated Fc/Fc+, respectively. In contrast to 2, an acetonitrile complex, [Ru(L2)(CH3CN)](PF6)2 (3), exhibited three redox couples at 0.26 and 0.37 V for two kinds of Fc/Fc+ couples, and 0.83 V for the Ru(II)/Ru(III) couple (vs ferrocene/ferrocenium ion as 0 V). In this complex, the redox potentials of the coordinated and the uncoordinated Fc-amide moieties were discriminated in the range of 0.11 V. Chemical two-electron oxidation of 1 gave [RuIIICl(L1 +)(DMSO)]3+ to generate a ferromagnetically coupled triplet state (S = 1) with J = 13.7 cm-1 (H = -JS1S 2) which was estimated by its variable-temperature electron spin resonance (ESR) spectra in CH3CN. The electron spins at the Ru(III) center and the Fe(III) center are ferromagnetically coupled via an amide linkage. In the case of 2, its two-electron oxidation gave the same ESR spectrum, which indicates formation of a similar triplet state. Such electronic communication may occur via the amide linkage forming the intramolecular hydrogen bonding.
AB - Tris(2-pyridylmethyl)amine (TPA) derivatives with one or two ferrocenoylamide moieties at the 6-position of one or two pyridine rings of TPA were synthesized. The compounds, N-(6-ferrocenoylamide-2-pyridylmethyl)-N,N- bis(2-pyridylmethyl)amine (Fc-TPA; L1) and N,N-bis(6-ferrocenoylamide-2- pyridylmethyl)-N-(2-pyridylmethyl)amine (Fc2-TPA; L2), were characterized by spectroscopic methods, cyclic voltammetry, and X-ray crystallography. Their Ru(II) complexes were also prepared and characterized by spectroscopic methods, cyclic voltammetry, and X-ray crystallography. [RuCl(L1)(DMSO)]PF6 (1) that contains S-bound dimethyl sulfoxide (DMSO) as a ligand and an uncoordinated ferrocenoylamide moiety exhibited two redox waves at 0.23 and 0.77 V (vs ferrocene/ferrocenium ion as 0 V), due to Fc/Fc+ and Ru(II)/Ru(III) redox couples, respectively. [RuCl(L2)]PF6 (2) that contains both coordinated and uncoordinated amide moieties showed two redox waves that were observed at 0.27 V (two electrons) and 0.46 V (one electron), assignable to Ru(II)/Ru(III) redox couples overlapped with the uncoordinated Fc/Fc+ redox couple and the coordinated Fc/Fc+, respectively. In contrast to 2, an acetonitrile complex, [Ru(L2)(CH3CN)](PF6)2 (3), exhibited three redox couples at 0.26 and 0.37 V for two kinds of Fc/Fc+ couples, and 0.83 V for the Ru(II)/Ru(III) couple (vs ferrocene/ferrocenium ion as 0 V). In this complex, the redox potentials of the coordinated and the uncoordinated Fc-amide moieties were discriminated in the range of 0.11 V. Chemical two-electron oxidation of 1 gave [RuIIICl(L1 +)(DMSO)]3+ to generate a ferromagnetically coupled triplet state (S = 1) with J = 13.7 cm-1 (H = -JS1S 2) which was estimated by its variable-temperature electron spin resonance (ESR) spectra in CH3CN. The electron spins at the Ru(III) center and the Fe(III) center are ferromagnetically coupled via an amide linkage. In the case of 2, its two-electron oxidation gave the same ESR spectrum, which indicates formation of a similar triplet state. Such electronic communication may occur via the amide linkage forming the intramolecular hydrogen bonding.
UR - http://www.scopus.com/inward/record.url?scp=39749091147&partnerID=8YFLogxK
U2 - 10.1021/ic7016038
DO - 10.1021/ic7016038
M3 - Article
AN - SCOPUS:39749091147
SN - 0020-1669
VL - 47
SP - 886
EP - 895
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 3
ER -