TY - JOUR
T1 - Synergistic mechanisms of Sanghuang–Danshen phytochemicals on postprandial vascular dysfunction in healthy subjects
T2 - A network biology approach based on a clinical trial
AU - Lim, Yeni
AU - Hwang, Woochang
AU - Kim, Ji Yeon
AU - Lee, Choong Hwan
AU - Kim, Yong Jae
AU - Lee, Doheon
AU - Kwon, Oran
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - With the increased risk of cardiovascular disease, the use of botanicals for vascular endothelial dysfunction has intensified. Here, we explored the synergistic mechanisms of Sanghuang–Danshen (SD) phytochemicals on the homeostatic protection against high-fat-induced vascular dysfunction in healthy subjects, using a network biology approach, based on a randomised crossover clinical trial. Seventeen differential markers identified in blood samples taken at 0, 3 and 6 h post-treatment, together with 12SD phytochemicals, were mapped onto the network platform, termed the context-oriented directed associations. The resulting vascular sub-networks illustrated associations between 10 phytochemicals with 32 targets implicated in 143 metabolic/signalling pathways. The three key events included adhesion molecule production (ellagic acid, fumaric acid and cryptotanshinone; VCAM-1, ICAM-1 and PLA2G2A; fatty acid metabolism), platelet activation (ellagic acid, protocatechuic acid and tanshinone IIA; VEGFA, APAF1 and ATF3; mTOR, p53, Rap1 and VEGF signalling pathways) and endothelial inflammation (all phytochemicals, except cryptotanshinone; 29 targets, including TP53 and CASP3; MAPK and PI3K-Akt signalling pathways, among others). Our collective findings demonstrate a potential of SD to protect unintended risks of vascular dysfunction in healthy subjects, providing a deeper understanding of the complicated synergistic mechanisms of signature phytochemicals in SD.
AB - With the increased risk of cardiovascular disease, the use of botanicals for vascular endothelial dysfunction has intensified. Here, we explored the synergistic mechanisms of Sanghuang–Danshen (SD) phytochemicals on the homeostatic protection against high-fat-induced vascular dysfunction in healthy subjects, using a network biology approach, based on a randomised crossover clinical trial. Seventeen differential markers identified in blood samples taken at 0, 3 and 6 h post-treatment, together with 12SD phytochemicals, were mapped onto the network platform, termed the context-oriented directed associations. The resulting vascular sub-networks illustrated associations between 10 phytochemicals with 32 targets implicated in 143 metabolic/signalling pathways. The three key events included adhesion molecule production (ellagic acid, fumaric acid and cryptotanshinone; VCAM-1, ICAM-1 and PLA2G2A; fatty acid metabolism), platelet activation (ellagic acid, protocatechuic acid and tanshinone IIA; VEGFA, APAF1 and ATF3; mTOR, p53, Rap1 and VEGF signalling pathways) and endothelial inflammation (all phytochemicals, except cryptotanshinone; 29 targets, including TP53 and CASP3; MAPK and PI3K-Akt signalling pathways, among others). Our collective findings demonstrate a potential of SD to protect unintended risks of vascular dysfunction in healthy subjects, providing a deeper understanding of the complicated synergistic mechanisms of signature phytochemicals in SD.
UR - http://www.scopus.com/inward/record.url?scp=85068361433&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-46289-3
DO - 10.1038/s41598-019-46289-3
M3 - Article
C2 - 31278329
AN - SCOPUS:85068361433
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 9746
ER -