Abstract
In various wearable energy storage devices, the shape of fiber or yarn has many advantages owing to their compatibility with the environment in which they are deployed. We present a systematic approach to maximizing the capacitance of a supercapacitor yarn by significantly increasing the yarn's surface area by growing a high density of nanorods around the yarn, followed by coating the surface with a pseudo-capacitive material. The two-step strategy is implemented using a dry-spun carbon nanotube yarn-based electrode, which is surrounded by a zinc oxide nanorod forest that is coated by a pseudo-capacitive nickel-cobalt layered double hydroxide material. The flexible as-prepared electrode exhibits a maximum capacitance of 1065 mF cm−2 (1278 F g−1) at a scan rate of 5 mV s−1 and an excellent capacitance retention of 60.5% over 7000 cycles at a current density of 30 mA cm−2. The outstanding performance of the composite yarn supercapacitor can be ascribed to the enhanced ion accessibility to the deep surface of the nickel-cobalt layered double hydroxide layer through the porous carbon nanotube yarn. Furthermore, the symmetric supercapacitor configuration demonstrated nearly 100% capacity retention at a bending angle of 150°.
Original language | English |
---|---|
Article number | 104198 |
Journal | Nano Energy |
Volume | 67 |
DOIs | |
State | Published - Jan 2020 |
Bibliographical note
Funding Information:This work was supported by the Korea Electric Power Corporation (No. R18XA06-54), and by the National Research Foundation of Korea funded by the Ministry of Science and ICT (No. NRF-2018K1A4A3A01064272 and NRF-2017R1D1A1B03032466), Republic of Korea.
Funding Information:
This work was supported by the Korea Electric Power Corporation (No. R18XA06-54 ), and by the National Research Foundation of Korea funded by the Ministry of Science and ICT (No. NRF-2018K1A4A3A01064272 and NRF-2017R1D1A1B03032466 ), Republic of Korea. Appendix A
Publisher Copyright:
© 2019 Elsevier Ltd
Keywords
- Carbon nanotube yarn
- Flexible symmetric supercapacitor yarn
- Nickel-cobalt layered double hydroxide
- Yarn/fiber supercapacitor electrode
- Zinc oxide nanorod