TY - JOUR
T1 - Syndecan transmembrane domain specifically regulates downstream signaling events of the transmembrane receptor cytoplasmic domain
AU - Hwang, Jisun
AU - Jang, Bohee
AU - Kim, Ayoung
AU - Lee, Yejin
AU - Lee, Joonha
AU - Kim, Chungho
AU - Kim, Jinmahn
AU - Moon, Kyeong Min
AU - Kim, Kyuhyung
AU - Wagle, Ram
AU - Song, Young Han
AU - Oh, Eok Soo
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - Despite the known importance of the transmembrane domain (TMD) of syndecan receptors in cell adhesion and signaling, the molecular basis for syndecan TMD function remains un-known. Using in vivo invertebrate models, we found that mammalian syndecan-2 rescued both the guidance defects in C. elegans hermaphrodite-specific neurons and the impaired development of the midline axons of Drosophila caused by the loss of endogenous syndecan. These compensatory ef-fects, however, were reduced significantly when syndecan-2 dimerization-defective TMD mutants were introduced. To further investigate the role of the TMD, we generated a chimera, 2eTPC, com-prising the TMD of syndecan-2 linked to the cytoplasmic domain of platelet-derived growth factor receptor (PDGFR). This chimera exhibited SDS-resistant dimer formation that was lost in the corre-sponding dimerization-defective syndecan-2 TMD mutant, 2eT(GL)PC. Moreover, 2eTPC specifically enhanced Tyr 579 and Tyr 857 phosphorylation in the PDGFR cytoplasmic domain, while the TMD mutant failed to support such phosphorylation. Finally, 2eTPC, but not 2eT(GL)PC, induced phosphorylation of Src and PI3 kinase (known downstream effectors of Tyr 579 phosphorylation) and promoted Src-mediated migration of NIH3T3 cells. Taken together, these data suggest that the TMD of a syndecan-2 specifically regulates receptor cytoplasmic domain function and subsequent downstream signaling events controlling cell behavior.
AB - Despite the known importance of the transmembrane domain (TMD) of syndecan receptors in cell adhesion and signaling, the molecular basis for syndecan TMD function remains un-known. Using in vivo invertebrate models, we found that mammalian syndecan-2 rescued both the guidance defects in C. elegans hermaphrodite-specific neurons and the impaired development of the midline axons of Drosophila caused by the loss of endogenous syndecan. These compensatory ef-fects, however, were reduced significantly when syndecan-2 dimerization-defective TMD mutants were introduced. To further investigate the role of the TMD, we generated a chimera, 2eTPC, com-prising the TMD of syndecan-2 linked to the cytoplasmic domain of platelet-derived growth factor receptor (PDGFR). This chimera exhibited SDS-resistant dimer formation that was lost in the corre-sponding dimerization-defective syndecan-2 TMD mutant, 2eT(GL)PC. Moreover, 2eTPC specifically enhanced Tyr 579 and Tyr 857 phosphorylation in the PDGFR cytoplasmic domain, while the TMD mutant failed to support such phosphorylation. Finally, 2eTPC, but not 2eT(GL)PC, induced phosphorylation of Src and PI3 kinase (known downstream effectors of Tyr 579 phosphorylation) and promoted Src-mediated migration of NIH3T3 cells. Taken together, these data suggest that the TMD of a syndecan-2 specifically regulates receptor cytoplasmic domain function and subsequent downstream signaling events controlling cell behavior.
KW - PDGFR
KW - Signal transduction
KW - Syndecan
KW - Transmembrane domain
UR - http://www.scopus.com/inward/record.url?scp=85111037091&partnerID=8YFLogxK
U2 - 10.3390/ijms22157918
DO - 10.3390/ijms22157918
M3 - Article
C2 - 34360683
AN - SCOPUS:85111037091
SN - 1661-6596
VL - 22
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 15
M1 - 7918
ER -