Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III

Seok Jin Kang, Masaki Kashiwara, Myungho Kim, Se Jin Oh

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Let ℓg0 be the category of finite-dimensional integrable modules over the quantum affine algebra U′q(g) and let RA∞-gmod denote the category of finite-dimensional graded modules over the quiver Hecke algebra of type A. In this paper, we investigate the relationship between the categories ℓAN-1(1)0 and ℓAN-1(2)0 by constructing the generalized quantum affine Schur-Weyl duality functors F(t) from RA∞-gmod to ℓAN-1(t)0 (t = 1,2).

Original languageEnglish
Pages (from-to)420-444
Number of pages25
JournalProceedings of the London Mathematical Society
Volume111
Issue number2
DOIs
StatePublished - 2015

Bibliographical note

Publisher Copyright:
© 2015 London Mathematical Society.

Fingerprint

Dive into the research topics of 'Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III'. Together they form a unique fingerprint.

Cite this