Abstract
The emulsion-based self-assembly of nanoparticles into low-dimensional superparticles of hollow vesicle-like assemblies is reported. Evaporation of the oil phase at relatively low temperatures from nanoparticle-containing oil-in-water emulsion droplets leads to the formation of stable and uniform sub-micrometer vesicle-like assembly structures in water. This result is in contrast with those from many previously reported emulsion-based self-assembly methods, which produce solid spherical assemblies. It is found that extra surfactants in both the oil and water phases play a key role in stabilizing nanoscale emulsion droplets and capturing hollow assembly structures. Systematic investigation into what controls the morphology in emulsion self-assembly is carried out, and the approach is extended to fabricate more complex rattle-like structures and 2D plates. These results demonstrate that the emulsion-based assembly is not limited to typical thermodynamic spherical assembly structures and can be used to fabricate various types of interesting low-dimensional assembly structures.
Original language | English |
---|---|
Pages (from-to) | 7791-7798 |
Number of pages | 8 |
Journal | Advanced Functional Materials |
Volume | 26 |
Issue number | 43 |
DOIs | |
State | Published - 15 Nov 2016 |
Bibliographical note
Publisher Copyright:© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
- emulsions
- hollow structures
- nanoparticles
- self-assembly
- surfactants