TY - JOUR
T1 - Supramolecular zinc phthalocyanine-imidazolyl perylenediimide dyad and triad
T2 - Synthesis, complexation, and photophysical studies
AU - Céspedes-Guirao, F. Javier
AU - Ohkubo, Kei
AU - Fukuzumi, Shunichi
AU - Fernández-Lázaro, Fernando
AU - Sastre-Santos, Ángela
PY - 2011/11/4
Y1 - 2011/11/4
N2 - Two new supramolecular architectures based on zinc phthalocyanine (Pc) and imidazolyl-substituted perylenediimide (PDI), ZnPc/DImPDI/ZnPc 1 and ZnPc/ImPDI 2, have been prepared. A strong electron-donor, ZnPc-8, which contained eight tert-octylphenoxy groups was synthesized to ensure high solubility, thereby reducing aggregation in solution and providing δ-donor features while avoiding regioisomeric mixtures. Also, PDI units were functionalized with tert-octylphenoxy groups at the bay positions, which provide solubility to avoid aggregation in solution, together with one and two imidazole moieties in the amide position, PDI-6 and PDI-4, respectively, to be able to strongly coordinate with the ZnPc complex. Supramolecular complexation studies by 1H NMR spectroscopy and ESI-MS demonstrate a high coordinative binding constant between imidazole-substituted PDI-4 or PDI-6 and ZnPc-8. The same results were confirmed by UV/Vis and fluorescence titration studies. UV/Vis titration studies revealed the formation of a 1:1 complex ZnPc/ImPDI 2 for the systems ZnPc-8 and PDI-6 and a 2:1 complex ZnPc/DImPDI/ZnPc 1 for the interaction of ZnPc-8 and PDI-4. The binding constant in both cases was determined to be on the order of 105 M-1. Femtosecond laser flash photolysis measurements provided a direct proof of the charge-separated state within both supramolecular assemblies by observing the transient absorption band at 820 nm due to the zinc phthalocyanine radical cation. The lifetimes of charge-separated states are (9.8±3) ns for triad 1 and (3±1) ns for dyad 2. As far as we know, this is the first time that a radical ion pair has been detected in a supramolecular assembled ZnPc-PDI system and has obtained the longest lifetime of a charge-separated state published for ZnPc-PDI assemblies.
AB - Two new supramolecular architectures based on zinc phthalocyanine (Pc) and imidazolyl-substituted perylenediimide (PDI), ZnPc/DImPDI/ZnPc 1 and ZnPc/ImPDI 2, have been prepared. A strong electron-donor, ZnPc-8, which contained eight tert-octylphenoxy groups was synthesized to ensure high solubility, thereby reducing aggregation in solution and providing δ-donor features while avoiding regioisomeric mixtures. Also, PDI units were functionalized with tert-octylphenoxy groups at the bay positions, which provide solubility to avoid aggregation in solution, together with one and two imidazole moieties in the amide position, PDI-6 and PDI-4, respectively, to be able to strongly coordinate with the ZnPc complex. Supramolecular complexation studies by 1H NMR spectroscopy and ESI-MS demonstrate a high coordinative binding constant between imidazole-substituted PDI-4 or PDI-6 and ZnPc-8. The same results were confirmed by UV/Vis and fluorescence titration studies. UV/Vis titration studies revealed the formation of a 1:1 complex ZnPc/ImPDI 2 for the systems ZnPc-8 and PDI-6 and a 2:1 complex ZnPc/DImPDI/ZnPc 1 for the interaction of ZnPc-8 and PDI-4. The binding constant in both cases was determined to be on the order of 105 M-1. Femtosecond laser flash photolysis measurements provided a direct proof of the charge-separated state within both supramolecular assemblies by observing the transient absorption band at 820 nm due to the zinc phthalocyanine radical cation. The lifetimes of charge-separated states are (9.8±3) ns for triad 1 and (3±1) ns for dyad 2. As far as we know, this is the first time that a radical ion pair has been detected in a supramolecular assembled ZnPc-PDI system and has obtained the longest lifetime of a charge-separated state published for ZnPc-PDI assemblies.
KW - electron transfer
KW - perylenediimide
KW - photophysics
KW - supramolecular chemistry
KW - zinc pthalocyanine
UR - http://www.scopus.com/inward/record.url?scp=80155143200&partnerID=8YFLogxK
U2 - 10.1002/asia.201100273
DO - 10.1002/asia.201100273
M3 - Article
C2 - 21976363
AN - SCOPUS:80155143200
SN - 1861-4728
VL - 6
SP - 3110
EP - 3121
JO - Chemistry - An Asian Journal
JF - Chemistry - An Asian Journal
IS - 11
ER -