Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites

Mantas Simenas, Sergejus Balciunas, Jacob N. Wilson, Sarunas Svirskas, Martynas Kinka, Andrius Garbaras, Vidmantas Kalendra, Anna Gagor, Daria Szewczyk, Adam Sieradzki, Miroslaw Maczka, Vytautas Samulionis, Aron Walsh, Robertas Grigalaitis, Juras Banys

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Cation engineering provides a route to control the structure and properties of hybrid halide perovskites, which has resulted in the highest performance solar cells based on mixtures of Cs, methylammonium, and formamidinium. Here, we present a multi-technique experimental and theoretical study of structural phase transitions, structural phases and dipolar dynamics in the mixed methylammonium/dimethylammonium MA1-xDMAxPbBr3 hybrid perovskites (0 ≤ x ≤ 1). Our results demonstrate a significant suppression of the structural phase transitions, enhanced disorder and stabilization of the cubic phase even for a small amount of dimethylammonium cations. As the dimethylammonium concentration approaches the solubility limit in MAPbBr3, we observe the disappearance of the structural phase transitions and indications of a glassy dipolar phase. We also reveal a significant tunability of the dielectric permittivity upon mixing of the molecular cations that arises from frustrated electric dipoles.

Original languageEnglish
Article number5103
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - 1 Dec 2020

Bibliographical note

Funding Information:
This project has been funded by the Research Council of Lithuania (LMTLT) (agreement No. S-MIP-19-4) and by EPSRC (Grant No. EP/K016288/1). AW is supported by a Royal Society University Research Fellowship and J.N.W. acknowledges useful discussions with Jarvist Frost on the Starrynight code. We are grateful to the UK Materials and Molecular Modelling Hub for computational resources, which is partially funded by EPSRC (EP/ P020194/1).

Publisher Copyright:
© 2020, The Author(s).

Fingerprint

Dive into the research topics of 'Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites'. Together they form a unique fingerprint.

Cite this