Abstract
Unconstrained and inequality constrained sparse polynomial optimization problems (POPs) are considered. A correlative sparsity pattern graph is defined to find a certain sparse structure in the objective and constraint polynomials of a POP. Based on this graph, sets of the supports for sums of squares (SOS) polynomials that lead to efficient SOS and semidefinite program (SDP) relaxations are obtained. Numerical results from various test problems are included to show the improved performance of the SOS and SDP relaxations.
Original language | English |
---|---|
Pages (from-to) | 218-242 |
Number of pages | 25 |
Journal | SIAM Journal on Optimization |
Volume | 17 |
Issue number | 1 |
DOIs | |
State | Published - 2007 |
Keywords
- Global optimization
- Lagrangian dual
- Lagrangian relaxation
- Polynomial optimization problem
- Semidefinite program relaxation
- Sparsity
- Sums of squares optimization