Abstract
Peroxiredoxin (Prx) is a family of bifunctional proteins that exhibit peroxidase and chaperone activities. Prx proteins contain a conserved Cys residue that undergoes a redox change between thiol and disulfide states. 2-Cys Prx enzymes, a subgroup of Prx family, are intrinsically susceptible to reversible hyperoxidation to cysteine sulfinic acid during catalysis. Cysteine hyperoxidation of Prx was shown to result in loss of peroxidase activity and a concomitant gain of chaperone activity. Reduction of sulfinic Prx enzymes, the first known biological example of such a reaction, is catalyzed by sulfiredoxin (Srx) in the presence of ATP. Srx appears to exist solely to support the reversible sulfinic modification of 2-Cys Prx enzymes. Srx specifically binds to 2-Cys Prx enzymes by recognizing several critical surface-exposed residues of the Prxs, and transfer the γ-phosphate of ATP to their sulfinic moiety, using its conserved cysteine as the phosphate carrier. The resulting sulfinic phosphoryl ester is reduced to cysteine after oxidation of four thiol equivalents.
| Original language | English |
|---|---|
| Pages (from-to) | S3-S8 |
| Journal | Kidney International |
| Volume | 72 |
| Issue number | SUPPL. 106 |
| DOIs | |
| State | Published - Aug 2007 |
Keywords
- Chaperone
- Cysteine sulfinic acid reductase
- Hydrogen peroxide
- Peroxiredoxin
- Sulfinylation
- Sulfiredoxin