Abstract
Nm23-H1/NDPK-A, a tumour metastasis suppressor, is a multifunctional housekeeping enzyme with nucleoside diphosphate kinase activity. Hexameric Nm23-H1 is required for suppression of tumour metastasis and it is dissociated into dimers under oxidative conditions. Here, the crystal structure of oxidized Nm23-H1 is presented. It reveals the formation of an intramolecular disulfide bond between Cys4 and Cys145 that triggers a large conformational change that destabilizes the hexameric state. The dependence of the dissociation dynamics on the H2O2 concentration was determined using hydrogen/deuterium-exchange experiments. The quaternary conformational change provides a suitable environment for the oxidation of Cys109 to sulfonic acid, as demonstrated by peptide sequencing using nanoUPLC-ESI-q-TOF tandem MS. From these and other data, it is proposed that the molecular and cellular functions of Nm23-H1 are regulated by a series of oxidative modifications coupled to its oligomeric states and that the modified cysteines are resolvable by NADPH-dependent reduction systems. These findings broaden the understanding of the complicated enzyme-regulatory mechanisms that operate under oxidative conditions.
Original language | English |
---|---|
Pages (from-to) | 669-680 |
Number of pages | 12 |
Journal | Acta Crystallographica Section D: Biological Crystallography |
Volume | 69 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2013 |