Structural, electronic and adsorption properties of monolayer 2H-MoS2 on graphene substrates: A computational study

Gregory Hartmann, Myungsuk Lee, Gyeong S. Hwang

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Two-dimensional molybdenum disulfide (MoS2) is a prospective material for gas sensing applications. Charge transfer between adsorbed gas and monolayer MoS2 is known to be a central mechanism responsible for the gas detection. This paper seeks to address the influence of underlying substrate, which is relatively less studied. The atomic and electronic structures and adsorption properties of monolayer 2H-MoS2 in MoS2/graphene heterostructures, with comparisons to the case of freestanding MoS2, are investigated using first-principles density functional theory calculations. The effect of the underlying graphene layer on the adsorption of NH3 and NO2 on monolayer 2H-MoS2 is found to be insignificant. However, our simulations demonstrate that monolayer MoS2 can be significantly corrugated when it adheres to a rippled graphene substrate. This may result in a substantial modification of the MoS2 electronic structure and thus exert influence on its gas sensing performance.

Original languageEnglish
Pages (from-to)135-138
Number of pages4
JournalInorganic Chemistry Communications
Volume106
DOIs
StatePublished - Aug 2019

Bibliographical note

Funding Information:
This work was supported by the Welch Foundation (No. F-1535 ). We would like to thank the Texas Advanced Computing Center for use of the Stampede supercomputing system (OCI-1134872).

Publisher Copyright:
© 2019 Elsevier B.V.

Keywords

  • First-principles density functional theory
  • MoS/graphene heterostructure
  • NH/NO adsorption
  • Surface corrugation
  • Two-dimensional material

Fingerprint

Dive into the research topics of 'Structural, electronic and adsorption properties of monolayer 2H-MoS2 on graphene substrates: A computational study'. Together they form a unique fingerprint.

Cite this