TY - JOUR
T1 - Striatal inhibition of MeCP2 or TSC1 produces sociability deficits and repetitive behaviors
AU - Lee, Yunjin
AU - Kim, Hannah
AU - Han, Pyung Lim
N1 - Funding Information:
This research was supported by a grant (HI15C1834) from the Ministry of Health and Welfare, Republic of Korea.
Publisher Copyright:
Copyright © Experimental Neurobiology 2018.
PY - 2018/12
Y1 - 2018/12
N2 - Autism spectrum disorder (ASD) is a heterogeneous group of neurobehavioral disorders characterized by the two core domains of behavioral deficits, including sociability deficits and stereotyped repetitive behaviors. It is not clear whether the core symptoms of ASD are produced by dysfunction of the overall neural network of the brain or that of a limited brain region. Recent studies reported that excessive glutamatergic or dopaminergic inputs in the dorsal striatum induced sociability deficits and repetitive behaviors. These findings suggest that the dorsal striatum plays a crucial role in autistic-like behaviors. The present study addresses whether functional deficits of well-known ASD-related genes in the dorsal striatum also produce ASD core symptoms. This study also examines whether these behavioral changes can be modulated by rebalancing glutamate and/or dopamine receptor activity in the dorsal striatum. First, we found that the siRNA-mediated inhibition of Shank3, Nlgn3, Fmr1, Mecp2, or Tsc1 in the dorsal striatum produced mild to severe behavioral changes in sociability, cognition, and/or repetitive behaviors. The knockdown effects of Mecp2 and Tsc1 on behavioral changes were the most prominent. Next, we demonstrated that behavioral changes induced by striatal inhibition of MeCP2 and TSC1 were rescued by D-cycloserine (an NMDA agonist), fenobam (an mGluR5 antagonist), SCH23390 (a D1 antagonist), and/or ecopipam (a D1 partial antagonist), pharmacological drugs that are known to regulate ASD-like symptoms in animal models. Collectively, these results suggest that the dorsal striatum is a critical brain region that, when dysfunctional, produces the core symptoms of ASD.
AB - Autism spectrum disorder (ASD) is a heterogeneous group of neurobehavioral disorders characterized by the two core domains of behavioral deficits, including sociability deficits and stereotyped repetitive behaviors. It is not clear whether the core symptoms of ASD are produced by dysfunction of the overall neural network of the brain or that of a limited brain region. Recent studies reported that excessive glutamatergic or dopaminergic inputs in the dorsal striatum induced sociability deficits and repetitive behaviors. These findings suggest that the dorsal striatum plays a crucial role in autistic-like behaviors. The present study addresses whether functional deficits of well-known ASD-related genes in the dorsal striatum also produce ASD core symptoms. This study also examines whether these behavioral changes can be modulated by rebalancing glutamate and/or dopamine receptor activity in the dorsal striatum. First, we found that the siRNA-mediated inhibition of Shank3, Nlgn3, Fmr1, Mecp2, or Tsc1 in the dorsal striatum produced mild to severe behavioral changes in sociability, cognition, and/or repetitive behaviors. The knockdown effects of Mecp2 and Tsc1 on behavioral changes were the most prominent. Next, we demonstrated that behavioral changes induced by striatal inhibition of MeCP2 and TSC1 were rescued by D-cycloserine (an NMDA agonist), fenobam (an mGluR5 antagonist), SCH23390 (a D1 antagonist), and/or ecopipam (a D1 partial antagonist), pharmacological drugs that are known to regulate ASD-like symptoms in animal models. Collectively, these results suggest that the dorsal striatum is a critical brain region that, when dysfunctional, produces the core symptoms of ASD.
KW - Autism spectrum disorder
KW - Dorsal striatum
KW - MeCP2
KW - TSC1
UR - http://www.scopus.com/inward/record.url?scp=85069529861&partnerID=8YFLogxK
U2 - 10.5607/en.2018.27.6.539
DO - 10.5607/en.2018.27.6.539
M3 - Article
AN - SCOPUS:85069529861
SN - 1226-2560
VL - 27
SP - 539
EP - 549
JO - Experimental Neurobiology
JF - Experimental Neurobiology
IS - 6
ER -